SCIENCE 10

UNIT 3: BIOLOGY

BOOK 1 DNA \div INTERITANCE

NAME:

BLOCK:

History of DNA researchDNA was discovered in 1869 by a chemist (Johann Friedrich Miescher) studying pus-coated medical bandageIn ns, this news substance was maned deooxyribu nuclei acid the sugar (deoxyribose) found in the molecule and its acidic propertiesA series of experiments in the early 1990 s showed that DNA causes bacteria to change their behaved and allowed viruses to infect cells, indicating that it played a special role in living organisms.in 1909
Russian-American biochemist Phoebus Levene discovered \qquad ribose (RNA) sugar and in 1929 deoxyribose sugar. (DNA)

$$
\begin{aligned}
& 19 \mathrm{~d} \\
& \text { F. Griffith } \\
& \text { ascovere }
\end{aligned}
$$ LD discovered

1928

- the enzyme destroyed the viral DNA in the dead S-strain. which prevented the transfer of virus DNA into the R-strciin - Only live Restrain = mousein 1950 Austrian biochemist Erwin Chargaff proposed that the nucleotide lives. sequence did not repeat. \Rightarrow aimed to prove LeveneThat instead the amounts of $A: J$ and $G: C$ are equal.
\qquad
\qquadThis discovery of base-pairing rules is commonly referred to as "Cha rgaff Reviles"

Female
Rosalind Franklin, English Chemist and X-Ray Crystallographer, made a crucial contribution to the discovery of the \qquad double-helix structure of DNAHer "photo 51 ," was shown to Watson by a colleague. This X-ray diffraction picture of a DNA

molecule was Watson's inspiration (the pattern was clearly a helix).Using Franklin's photograph and their own data, Watson and Crick created their famous DNA model. Franklin's contribution was not acknowledged, but after her death Crick atmitted that her contribution had been critical.In 1953 , the structure of the DNA molecule was finally discovered by \qquad Wats
Molecule
Structure of the DNA MoleculeDNA is an extremely large molecule
 containing thousands - millions of atoms joined by chemical bondsIt is a Pair of separate strands twisted together to form a 'double helix,' however it is usually shown unwound to look like a ladder

Uncoiled Diagram Each DNA strand is made from repeated molecular units called Nucleotides

- A single nucleotide contains a Phosphate attached to a
sugar molecule which is bonded to 1 al 4 possible

Space-Filling Model
Double Helix bases.

Nucleotide:

\square The DNA strands are created when sugar and phosphate from two different nucleotides band , forming the "backbone "or "rungs"
 of a ladder Complementary Base Pairing
\square There are four different bases in DNA:

1. Adenine (a)
2. Thymine (T)
3. Cytosine (c)
4. Guanine (G)

- These bases AlwAYS match
 the other strand:
- Adenine pairswith Thymine

- Guanine pairs with Cytosine

Ways to Remember this:

- COLGATE" = CG ATT bands.
This relationship is called "complementary base pairing"
G_{D} anything other than A-T of G-C is considered an error (natation)

ANSWERS:

1. Deoxyribonucleic acid
2. Sugar, Phosphate, Base
3. Base
4. Adenine (A), Thymine (T), Cytosine (C), Guanine (G)
5. a) b)

6. d) Sugar and Phosphate
7.

7. Adenine
8. Guanine
9. Adenine ALWAYS pars with thymine \& cytosine ALWAYS pairs with guanine
10.

11.

Organism	Percentage of each type of base			
	Adenine	Guanine	Cytosine	Thymine
Human	31	$\mathbf{1 9}$	19	$\mathbf{3 1}$
Cow	28	22	$\mathbf{2 2}$	$\mathbf{2 8}$
Salmon	29	$\mathbf{2 1}$	21	29
Wheat	27	$\mathbf{2 3}$	$\mathbf{2 3}$	$\mathbf{2 7}$
Yeast	31	$\mathbf{1 9}$	$\mathbf{1 9}$	$\mathbf{3 1}$

1. DNA double her ix is wound around special proteins (Histones) \Rightarrow "nucleosome"
2. This is then looped onto a protein 'scaffold' (achromat in)
3. This is then twisted into a coil (condensed chromatin-
4. This is then loped and packed into a chroma hid

\rightarrow the instructions to make
Living cells contain thousands of complex molecules called proteins, which perform all the important jobs inside the cell, makes
\square DNA sequences of hundreds to thousands of base pairs that contain the 'instructions' for making a protein are called genes

 worksheet in the space provided below
5. Write what each arrow is pointing at in the diagram below. Choose from the following: Condensing of Chromatin; Nitrogen Base Pairs; Chromosome; Chromatin; Gene; Double Helix DNA; Nucleosome

6. Where in the human cell is DNA stored?

Nucleus
3. Organize the following terms based on size, from smallest to largest: chromatin, nucleus, chromosome, cell, nucleotide, nitrogen containing bases, DNA double helix.
Smallest

nitrogen bases < doudienelix \& Nucleotide <Chromatin < Chromosome < Nucleus < Cell
4. a) How many chromosomes does each human cell have? 46 chromosomes
b) How many identical pairs)? 22 identical pairs ($\# 1-22$)
c) How many different pairs)? 1 different pair ($\begin{aligned} & \text { \# } 23 \\ & \text { sexchronoscmos })\end{aligned}$
5. An analogy relates one thing to a completely unrelated thing. Identify a genetics term that could be an analogy for each of the following:

c) Sentence - Gen
d) Chapter

e) Book

ANSWERS:

1. a) Nitrogen Base Pairs
b) DNA Double Helix
c) Nucleosomes
d) Chromatin
e) Condensing of Chromatin
f) Gene
2. Nucleus
3. Nitrogen Containing Bases, DNA Double Helix, Nucelotide, Chromatin, Chromosome, Nucleus, Cell
4. a) 46 chromosomes
b) 22 identical pairs
c) 1 different pair
5. a) Base Pairs
b) Portion of sequence of DNA that codes for a protein
c) Gene
d) Chromosome
e) All the genes in the body (this is called the genome

Protein Synthesis

WATCH VIDEO

Let's take the trait for eye colour, for example. Yes, DNA has the genetic information that codes for the color of your eyes. But how? Eye colors is based on the pigment that is found inside the eye. In order to have that pigment, your genes (sections of DNA) must code for specific proteins which help to make that pigment that gives your eye colour.

SOWHATS SO GREATABOUTPROTEINS?

Proteins are involved in nearly every bodily process. They are involved in transpert, in structure, they act as enzymes in cellar and chemical reactions, they make all kinds of materials, they are involved in protecting the body... and much, MUCH MORE! Your body must make proteins. Proteins are \qquad .

PROTRINSYNTHESIS:

Protein synthesis is the process in which cells make proteins.
It occurs in two stages: transcription and translation.

1. Transcription occurs in the $\cap \cup C l C \cup S$ and is the transfer of genetic instructions in DNA \rightarrow MRNA
2. Translation occurs at the riboscme, where the instructions in mRNA are read and a chain of amino acids is made.

1. Transcription:

As you can see in the diagram to the right, to begin the process of protein synthesis, the DNA must first be
\qquad opened and an RNF
molecule must be made.
RNA is different from DNA in a couple ways. It's made of the sugar \qquad rather than
deoxyribose, it uses \qquad il instead of T" ${ }^{\text {Thymine }}$, and most importantly, it CAN
(a)

leave the nucleus.
messenger RNA (mRNA) is made by matching complimentary \qquad to their partners.

PRACTICE

Practice determining the mRNA sequence from the original DNA sequence.
Hint: When you would have put a T, put a U now.

DNA	A	T	G	T	T	C	A	G	A
mRNA	U	A	C	A	A	G	U	C	U

DNA	T	A	G	G	A	T	C	C	G
mRNA	A	U	C	C	U	A	G	G	C

2. Translation

After it is created, the mRNA will leave the nucleus and travel to a \qquad ribosome

Inside the ribosome the ERNA is matched in 3 letter segments with complementary
 RNA). RNA or \qquad
These three letter segments are called \qquad
Each codon codes for a specific \qquad inc

MessengerRNA
\qquad , which will be bonded to the RNA and added to the \qquad chain as it is matched to the complementary mRNA codon.

Peptide Synthesis
peptide $=$ small chain of a
many peptides $=$ prate in
'large)

Peptide Synthesis
peptide = small chain of a
many peptides = prate in
(large)
strand. Again, remember that any where you
Practice matching mRNA with the complementary tRNA strand. Again, remember that any where you would have had a T, you will again have a U.

PRACTICE

In order to determine which amino acid will be added to the growing peptide chain, we look at the codon , or three letter code, in the \qquad , NOT the tRNA. Consider the RNA as just the vehicle which transports the amino acid to it's place. The mRA is the keeper of the actual message.

Use the table by matching the codon starting from the center and following the letters towards the outside.

PRACTICE

Practice determining which amino acid will be added based on each codon.

mRNA Codon	Amino Acid
AUG	MET
GUA	VAL
UAC	TYR
TAU	HIS
UUA	LEU
GGC	GLY
UAG	TER
UGA	TER
GCC	PRO
GAG	GLN
AAC	SN

Assignment \#3: Complete the following worksheet in the space provided below

Finally, you should be able to transcribe and translate a molecule of DNA from start to finish. Helpful hints to remember:

- Only DNA has thymine (T), from there, all T's should be replaced with U's (uracil)
- The amino acid is determined using the codon in the mRNA, not the tRNA. Make sure you're looking at the right row!
- You can't determine amino acids without the help of a decoder like the one on the previous page. Flip back!

$m R N A$

$m R N A$

DNA	TAC	ACT*	AAC*	CGG*	TTT*	GCC*	TAA*	GTT*	CCC*	CTT*
mRNA	AUG	UGA*	UUG*	GCC*	AAA*	CGG*	AUU*	CAA*	GGG*	GAA*
tRNA	UAC	ACU*	AAC*	CGG*	UUU*	GCC*	UAA*	GUU*	CCC*	CUU*
Amino Acid	Met	Ter	Leu	Ala	Lys	Arg	Ile	Gln	Gly	Glu

* = multiple possible answers

DNA	ATG	TTA	AGC	CAC*	CAT	CCT	ACA*	TTT	TAC	GAC
mRNA	UAC	AAU	UCG	GUG* *	GTA	GGA	UGU*	AAA	AUG	CTG
tRNA	AUG	UUA	AGC	CAC*	CAU	CCU	ACA*	UUU	UAC	GAC
Amino Acid	TYR	ASN	SER	Val	VAL	GLY	Cys	LYS	MET	LEU

Describe the process of transcription
In transcription, DNA is partially uncoiled so that complimentary nucleotides can be matched, forming a strand of Messenger RNA. mRNA differs from DNA in that it is able to leave the nucleus as well as thymine will now be replaced by uracil.

Describe the process of translation
Translation is the process in which the mRNA is decoded to form a peptide chain in the ribosome. Every 3 nucleotides in the mRNA is known as a codon, and matches with a complimentary segment of Transfer RNA. tRNA has the job of bringing the correct amino acid to add to the growing chain which will eventually become a protein.

PART C - MENDEL AND TEH DISCOVERY OF INHERITANCE

The Life of Gregor Mendel

Gregor Johann Mendel was born in \qquad 1822 in what is now the Czech Republic\square As the son of a poor farming family, he joined the Catholic Church and became a friar in the Augustinian Monastery in BrnoMendel experimented between 1856 and 1863 with
edible pea plants grown in the monastery garden
\square He grew around $\sim 28,000$ plant, focusing on the seven traits, such as flower colour, seed colour, and seed shape (see diagram below).

How Mendel's pea plants helped us understand genetics - Hortensia Jiménez Diaz

WATCH VIDEO

An Example of a Mendel Experiment:
\square Mendel began with peas that had the following characteristics:

(Parent) (certain visible traits to its offspring) eg. always yellow seeds.
2. The offspring always resembled the parents

- He bred together one plant of each colour to make a first generation (F_{1}): every offspring plant had purple flowers identical to their purple parents

Mendel realized that he had discovered the rules that controlled
inheritance: :the passing on of chanateresisisis from parents to offspringHe proposed that \qquad hereditary units/factars" were responsible for the traits of organisms, and that there were different versions of these factors.We now know these 'factors' are \qquad genes , and their different versions are alleles

Mendel's research was ignored during his lifetime, but his work was rediscovered around \qquad 1900 and his discoveries were summarized into two 'Laws':

Law 1: Every organism has \qquad 2 alleles for each genl (because they are on two paired chromosomes). These separate during the formation of gametes (eggs or sperm) so that each
 gamete randomly receives just I allie.
During fertiaration, from each parent combines to for anevpair. $\operatorname{egg}(23)+\operatorname{sperm}(23)=46(y 00)$
This ss called the Pericifilief)-segregation "
Example: Testes cells go through Meiosis, producing 4 sperm cells with one chromosome from each chromosome pair.
 each chromosome
carries Aversion of the gene

Law 2: "Independant Assortment"
certain alleles dominate the expression over others. This causes the organism to have the
\qquad dominat trait even if it has both alleles

- Dominant = when one allele over rides the expression of another allele, such as the purple flower allele; often given a capital letter, e.g. X^{R} or W
W
\square Recessive $=$ when one allele is hidden \qquad by the expression of another allele, such as the white flower allele; often given a lower case letter, egg. $\mathrm{XI}^{\text {or w }}$
Example 1: Having a curved hairline (widow's peak) is a dom incant allele, and a straight hairline is a recessive allele. This means that if you inherit one of ω each allele from your parents, you will have a widows peak.
Example 2: Dominant and recessive traits of human genetic traits.

Example 3: Dominant and recessive traits of Mendel's pea plants.

Assignment \#4: Complete the following worksheet in the space provided below

ANSWERS:

1a) C \& c
b) no crest \& crest
2. C is dominant. When the pigeon has one C allele and one c allele, it has no crest. This is the trait associated with the C allele
3. a) S \& N
b) Full Slippers (allele combination SS)

Partial Slippers (allele combination SN)
No Slippers (allele combination NN)
4. The crest gene was either crest of no crest. When the pigeon had one of each allele, C dominated and the pigeon had no crest. The slippers gene has three possible traits. When the pigeon has one of each allele, it has "partial slippers". It doesn't appear as though one allele is dominating over the other, like in the crest gene.
5.

	\mathbf{F}_{2}		
Trait	Dominant	Recessive	Ratio (to two decimal places) Dominant: Recessive
Seed form	5474	1850	$2.96: 1$
Seed color	6022	2001	$3.01: 1$
Flower position	705	207	$3.14: 1$
Flower color	882	224	$3.15: 1$
Pod form	428	299	$2.95: 1$
Pod color	787	277	$2.82: 1$
Stem length			$2.8: 1$

6.

a. Chromatin
b. Chromosome
c. Complementary Base Pairing
d. DNA
e. Dominant
f. F_{1}
g. F2
h. Gene
i. Mendelian Genetics
j. Nucelosome
k. Nucleus

1. Principle of Segregation
m. Protein
n. Recessive

Tightly wrapped nucleosomes. The purpose of it is to package DNA into a more compact shape, prevent DNA damage, and to control gene expression.
Separate strands of DNA found inside the nucleus of the cell, packed into dense structures during cell division. Humans have 23 pairs of chromosomes, all of which are identical except for the sex chromosomes (which are XY in males). The same gene is found in the same position on each chromosome of the pair, but they may be different alleles.
The nitrogen-containing bases (guanine, cytosine, adenine, thymine) found in DNA always pair in a specific way: guanine always pairs with cytosine and adenine always pairs with thymine.

The hereditary molecule which stores the information for making proteins as a series of genes.
An allele of a gene whose phenotype overwrites the expression of a recessive allele.
First generation of offspring
Second generation of offspring, from crossing two F_{1} offspring.
A region of DNA which contains the instructions for building a specific protein. Genes are found on chromosome

A form of inheritance described by Gregor Mendel in which the genes show complete dominance.
DNA wound around special proteins/
The part of the cell that contains the genetic information (in the form of chromosomes), except during cell division.

Allele pairs separate during gamete formation, and randomly unite at fertilization.
A complex, three-dimensional molecule whose shape allows it to perform a specific function within living cells. Genes provide the instructions for the assembly of specific proteins.

An allele of a gene whose phenotype is concealed by the presence of a dominant allele.

Section 2 - The slipper Gene

There are two alleles for the slipper gene which creates a slipper of feathers on the feet:

Alleles	Traits
SS	full slipper
SN	
NN	

3. Consider the information in above.
a. What are the different alleles for slippers in pigeons?
b. What are the different traits for slippers found in pigeons? What combination of alleles results in each of these traits?
4. What is different about the traits of the slipper gene, compared to the traits of crest gene?

Part 2 - Mendel's Experimental Results

5. Mendel crossed one pea plant with each trait together (to form the F1 generation). In every case, he found that the F1 generation all showed the same trait as ONE of their parents (the dominant trait). He then self-fertilized the F1 plants (crossed two F1 plants together), and found different results. These results are shown in the table below. Calculate the ratio (to two decimal places) of the dominant to recessive traits.

Table 1: A Summary of Mendel's Results.

	F $_{2}$		
Trait	Dominant	Recessive	Ratio (to two decimal places) Dominant : Recessive
Seed form	5474	1850	
Seed color	6022	2001	
Flower position	651	207	
Flower color	705	224	
Pod form	882	299	
Pod color	428	152	
Stem length	787	277	

REMINDER: To find ratio, divide BOTH numbers by the smaller one.

Part 3-Definitions

6. Define the following vocabulary terms using complete sentences. Make sure to be detailed.
a. Allele
b. Chromatin
c. Chromosome
d. Complementary

Base Pairing
e. DNA
f. Dominant
g. F1
h. F2
i. Gene
j. Mendelian Genetics
k. Nucelosome
l. Nucleus
m. Principle of Segregation
n. Protein
o. Recessive

PARTE-UNDERSTANDINS INHERITANCE
2 Laws: Segregation t Independant

Assortment
Mendel's Inheritance
1
\square The system of inheritance described by Mendel is now known as Mendelian Inheritance in his honour
\square In peas, he had discovered several genes where the dominant allele covers completely the expression of the recessive allele. This is called complete dominant $A B$
\square All of Mendel's pea plants showed complete dominance
 Inheritance
Incomplete Dominance $\frac{P}{P P P P}$ is no dominate Phenotype. Incomplete Dominance is no dominat.
\square When neither allele completely masks the other, and the two alleles combine to create a new trcuit that is a blend of both alleles, this is called incomplete dominance * neither allele is dom./rec.

* both blend \Rightarrow new phenotype mon em
(heterozygous genotype)
Example: In snapdragons, the gene for flower color shows incomplete t dominance. When red and white-flowered parents are crossed together, the offspring have pinK flowers (a blend of the $R E D$ and white alleles).

WATCH VIDEO
Genetics - Exceptions to Mendelism - Lesson 7 | Don't Memorise

Both logether
1 covers recessive/most carmen phenotype. "version of the gere" white Black
Coplequenge tor man wiser backer When neither allele completely dominates $A A$) $B B$ and the two alleles are expressed TOGETHER! at
the same time this is called CO-dominance.
Heterozygous offspring ($A B$)

has a phenotype that shows Bott hers expressed together at the same time traits ${ }^{-1}$
Example: In cattle, a gene for hair cola_ shows co-dominance. When
brown and white-haired parents are crossed together, all of the offspring have brown white $\frac{\text { hair }}{\text { was }}$ (they show BCTH brown and white hair).
\qquad

True breeding P:
\qquad
Homaryous genotyp

100 \% heterrargavis genotype
100% expression of both $A+B$
not an chromosomes
$D^{1-22 \ldots m a l y}+23$
Sex-Linked Inheritance

$$
x x=\text { genetic }
$$

\square Sometimes the genes (and their alleles) that we are interested in are found on the sex chromosomes, either x ar y in humans male.
\square This leads to a special form of inheritance called sey-linked inheritance in which the alleles are expressed differently in males ($X Y$) and females ($X X$)

- recessive allele (to be color-blind = need 2 copes)

Example: Red-green colour blindness in humans is caused by an allele of a gene on the x-chromosome males are much more likely to have this colour blindness because they dan't hake a "backup" version on their Y chromosomes. For females to be $X Y$ - unaffected male
$x-y$-color bind male
$x X$ - unaffected female
$x^{x} x$ - carrier female
$x \times x$-colorblind female

F_{2} gen

white: speckled: black

affected, \qquad of their X chromosomes must have the-green colour blindness allele.

Predicting Inheritance with Punnett SquaresIt is possible to predict the alleles inherited by offspring using a technique called a punnet square STEPS:
 of the parents : what alleles do they have for the gene in question?
2. Separable the alleles in each parent and place one parent's alleles on the top and the other parent's alleles on the side of a 2×2 grid (this is the square)
3. Fill in the grid by combining thealletes as though they were fertilizing each other to create an offspring (SS) is crossed with a wrinkled pea plant (ss). What is the outcome?

Punnett Square Examples
Example 1: Use Punnett squares to confirm the results of Mendel's experiment on pea plants (remember, his pea plants showed complete dominance):

F1 Generation: one purple (PP - dominant) plant was crossed with one white (WW - recessive) plant.

Outcome: 100% of the plants inherited 1 dominate (P) allele and 1 recessive (W), which means that they all show the dominant

$$
\text { white : } 25 \% \text { (ww) }
$$

Example 2: In snapdragons, the gene for flower colour shows incomplete dominance. If you cross a pink and white flowered plant, what is the chance that the offspring are pink?

Example 3: Red-green color blindness (b) is a recessIve allele on the X chromosome. A folorblind male parries a formal female, will any of their children be colour blind?

Assignment \#5: Complete the following worksheet in the space provided below

1. In peas, the allele for yellow pea colour (Y) is completely dominant over green peas (y). If you crossed a true-breeding yellow pea plant (YY) with a hybrid yellow pea plant (Yy), what is the chance that the offspring will inherit two dominant alleles?
2. Some people can roll their tongues into a U-shape. The ability to do so is a dominant allele. If a father and mother cannot roll their tongues, what is the probability that their children will be able to form a U-shape with their tongues?
3. In some chickens, the gene for feather colour has two co-dominant alleles: an allele for black feathers (B) and an allele for white feathers (W). Hybrids with both alleles (BW) have a mix of black and white feathers known as erminette. If a black chicken is crossed with a white chicken, what is the chance that they would have an erminette chick?
4. In J apanese four o'clock plants, red flower color (R) is incompletely dominant over white flowers (r), and the combination (Rr) results in plants with pink flowers. If you crossed a pink flowered plant with itself, what percentage of the offspring would have white flowers?
5. In some cats the gene for tail length shows incomplete dominance. True-breeding cats can have long tails or no tails, and cats with one long tail allele and one no-tail allele have short tails. If you crossed a long tail cat and a short tail cat, what is the chance that the offspring will have short tails?
6. In cats, the gene for hair colour has a black allele (B) and a yellow allele (b) that shows codominance, combining to create black and yellow spots called tortoiseshell. This gene is found on the X chromosome. If you cross a tortoiseshell female with a yellow male, what percentage of the kittens will have black hair?
7. In humans, the blood-clotting disease hemophilia is a recessive allele found on the X chromosome. The normal allele creates a protein that forms blood clots after an injury. If a female who is a carrier for hemophilia - she has both alleles - has children with a male with normal blood-clotting, what is the probability of male children with hemophilia, and female children with hemophilia?

Assignment \#6: Bikini Bottom Genetics Activity (quiz prep)

Scientists at Bikini Bottoms have been investigating the genetic makeup of the organisms in this community. Use the information provided and your knowledge of genetics to answer each question.

1. For each genotype below, indicate whether it is a heterozygous (He) OR homozygous (Ho).
TT \qquad
Bb \qquad
DD \qquad
Ff \qquad
tt \qquad
dd \qquad
Dd \qquad
ff \qquad
Tt \qquad
bb \qquad
BB \qquad
FF \qquad

Which of the genotypes in \#1 would be considered purebred? \qquad
Which of the genotypes in \#1 would be hybrids? \qquad
2. Determine the phenotype for each genotype using the information provided about SpongeBob.

Yellow body color is dominant to blue.
YY \qquad Yy \qquad уу \qquad
Square shape is dominant to round.
\qquad
SS
Ss \qquad ss \qquad
3. For each phenotype, give the genotypes that are possible for Patrick.

A tall head (T) is dominant to short (t).

Tall $=$ \qquad Short $=$ \qquad
Pink body color (P) is dominant to yellow (p).
Pink body $=$ \qquad Yellow body $=$ \qquad
4. SpongeBob SquarePants recently met SpongeSusie Roundpants at a dance. SpongeBob is heterozygous for his square shape, but SpongeSusie is round. Create a Punnett square to show the possibilities that would result if SpongeBob and SpongeSusie had children. HINT: Read question \#2!

A. List the possible genotypes and phenotypes for their children.
B. What are the chances of a child with a square shape? \qquad out of \qquad or \qquad \%
C. What are the chances of a child with a round shape? \qquad out of \qquad or \qquad \%
5. Patrick met Patti at the dance. Both of them are heterozygous for their pink body color, which is dominant over a yellow body color. Create a Punnett square to show the possibilities that would result if Patrick and Patti had children. HINT: Read question \#3!

A. List the possible genotypes and phenotypes for their children.
B. What are the chances of a child with a pink body? \qquad out of \qquad or \qquad \%
C. What are the chances of a child with a yellow body? \qquad out of \qquad or \qquad \%
6. Everyone in Squidward's family has light blue skin, which is the dominant trait for body color in his hometown of Squid Valley. His family brags that they are a "purebred" line. He recently married a nice girl who has light green skin, which is a recessive trait. Create a Punnett square to show the possibilities that would result if Squidward and his new bride had children. Use B to represent the dominant gene and b to represent the recessive gene.
A. List the possible genotypes and phenotypes for their children.

B. What are the chances of a child with light blue skin? \qquad \%
C. What are the chances of a child with light green skin? \qquad \%

D. Would Squidward's children still be considered purebreds? Explain!
7. Assume that one of Squidward's sons, who is heterozygous for the light blue body color, married a girl that was also heterozygous. Create a Punnett square to show the possibilities that would result if they had children.

A. List the possible genotypes and phenotypes for their children.
B. What are the chances of a child with light blue skin? \qquad \%
C. What are the chances of a child with light green skin? \qquad \%
8. Mr. Krabbs and his wife recently had a Lil' Krabby, but it has not been a happy occasion for them. Mrs. Krabbs has been upset since she first saw her new baby who had short eyeballs. She claims that the hospital goofed and mixed up her baby with someone else's baby. Mr. Krabbs is homozygous for his tall eyeballs, while his wife is heterozygous for her tall eyeballs. Some members of her family have short eyes, which is the recessive trait. Create a Punnett square using \mathbf{T} for the dominant gene and \mathbf{t} for the recessive one.

A. List the possible genotypes and phenotypes for their children.
B. Did the hospital make a mistake? Explain your answer.

\qquad

Use your knowledge of genetics to complete this worksheet.

1. Use the information for SpongeBob's traits to write the phenotype (physical appearance) for each item.

Trait	Dominant Gene	Recessive Gene
Body Shape	Squarepants (S)	Roundpants (s)
Body Color	Yellow (Y)	Blue (y)
Eye Shape	Round (R)	Oval (r)
Nose Style	Long (L)	Stubby (1)

(a) LL- \qquad (e) $\mathrm{Rr}-$ \qquad
(b) yy- \qquad (f) ll- \qquad
(c) Ss - \qquad
(g) ss- \qquad
(d) RR - \qquad
(h) Yy - \qquad
2. Use the information in the chart in \#1 to write the genotype (or genotypes) for each trait below.
(a) Yellow body - \qquad (e) Stubby nose - \qquad
(b) Roundpants - \qquad (f) Round eyes - \qquad
(c) Oval eyes - \qquad (g) Squarepants - \qquad
(d) Long nose - \qquad (h) Blue body - \qquad
3. Determine the genotypes for each using the information in the chart in \#1.
(a) Heterozygous round eyes -
(c) Homozygous long nose - \qquad
(b) Purebred squarepants - \qquad (d) Hybrid yellow body - \qquad
4. One of SpongeBob's cousins, SpongeBillyBob, recently met a cute squarepants gal, SpongeGerdy, at a local dance and fell in love. Use your knowledge of genetics to answer the questions below.

(a) If SpongeGerdy's father is a heterozygous squarepants and her mother is a roundpants, what is her genotype? Complete the first Punnett square to show the possible genotypes.

Based on your results, what would Gerdy's genotype have to be? \qquad
(b) Complete the second Punnett square to show the possibilities that would result if Billy Bob \& Gerdy had children.
NOTE: SpongeBillyBob is heterozygous for his squarepantsshape.

(c) What is the probability of kids with squarepants? \qquad \%
(d) What is the probability of kids with roundpants? \qquad \%
5. SpongeBob's aunt and uncle, SpongeWilma and SpongeWilbur, have the biggest round eyes in the family. Wilma is believed to be heterozygous for her round eye shape, while Wilbur's family brags that they are a pure line. Complete the Punnett square to show the possibilities that would result if SpongeWilma and SpongeWilbur had children.
(a) Give the genotype for each person. Wilma - \qquad Wilbur - \qquad

(b) Complete the Punnett square to show the possibilities that would result if they had children.
(c) What is the probability that the kids would have round eyes? \qquad \%
(d) What is the probability that the kids would be oval eyes? \qquad \%
6. SpongeBob's mother is so proud of her son and his new wife, SpongeSusie, as they are expecting a little sponge. She knows that they have a 50% chance of having a little roundpants, but is also hoping the new arrival will be blue (a recessive trait) like SpongeSusie and many members of her family. If SpongeBob is heterozygous for his yellow body color, what are the chances that the baby sponge will be blue? Use the Punnett square to help you answer this question.

7. SpongeBob's aunt is famous around town for her itty, bitty stubby nose! She recently met a cute squarepants fellow who also has a stubby nose, which is a recessive trait. Would it be possible for them to have a child with a regular long nose? Why or why not? Use the Punnett square to help you answer this question.

8. If SpongeBob's aunt described in \#7 wanted children with long noses, what type of fellow would she need to marry in order to give her the best chances? Use the Punnett square to help you answer this question.

Bikini Bottom Genetics
 Incomplete Dominance

SpongeBob loves growing flowers for his pal Sandy! Her favorite flowers, Poofkins, are found in red, blue, and purple. Use the information provided and your knowledge of incomplete dominance to complete each section below.

1. Write the correct genotype for each color if R represents a red gene and B represents a blue gene.

$$
\text { Red - } \quad \text { Blue -___ Purple - }
$$

2. What would happen if SpongeBob crossed a Poofkin with red flowers with a Poofkin with blue flowers. Complete the Punnett square to determine the chances of each flower color.
(a) Give the genotypes and phenotypes for the offspring.

(b) How many of the plants would have red flowers? \qquad \%
(c) How many of the plants would have purple flowers? \qquad \%
(d) How many of the plants would have blue flowers? \qquad \%
3. What would happen if SpongeBob crossed two Poofkins with purple flowers? Complete the Punnett square to show the probability for each flower color.
(a) Give the genotypes and phenotypes for the offspring.

(b) How many of the plants would have red flowers? \qquad \%
(c) How many of the plants would have purple flowers? \qquad \%
(d) How many of the plants would have blue flowers? \qquad \%
4. What would happen if SpongeBob crossed a Poofkin with purple flowers with a Poofkin with blue flowers? Complete the Punnett square to show the probability for plants with each flower color.
(a) Give the genotypes and phenotypes for the offspring.

(b) If SpongeBob planted 100 seeds from this cross, how many should he expect to have of each color?

Purple flowers - \qquad Blue flowers - \qquad Red flowers - \qquad

SpongeBob and his pal Patrick love to go jellyfishing at Jellyfish Fields! The fields are home to a special type of green jellyfish known as Goobers and only really great jellyfishermen are lucky enough to catch some on every trip. Many of the jellyfish are yellow (YY) or blue (BB), but some end up green as a result of incomplete dominance. Use this information to help you complete each section below.
5. What would happen if SpongeBob and Patrick crossed two "goobers" or green jellyfish? Complete the Punnett square to help you determine the probability for each color of jellyfish.
(a) Give the possible genotypes and phenotypes for the offspring.

(b) What percentage of the offspring would be yellow? \qquad \%
(c) What percentage would be blue? \qquad \%
(d) What percentage would be "goobers" (green)? \qquad \%
6. What would happen if they crossed a yellow jellyfish with a goober? Complete the Punnett square to help you determine the probability for each color of jellyfish.
(a) Give the possible genotypes and phenotypes for the offspring.

(b) What percentage of the offspring would be yellow? \qquad \%
(c) What percentage would be blue? \qquad \%
(d) What percentage would be "goobers" (green)? \qquad \%
7. What would happen if they crossed a blue jellyfish with a yellow jellyfish? Complete the Punnett square to help you answer the questions.

If 100 jellyfish were produced from this cross, how many would you expect for each?

Yellow - \qquad Blue - \qquad Goobers - \qquad
8. What would happen if they crossed a blue jellyfish with a goober? Complete the Punnett square to help you answer the questions.

If 100 jellyfish were produced from this cross, how many would you expect for each?

Yellow - \qquad Blue - \qquad Goobers - \qquad

Bikini Bottom Genetics ANSWER KEY

Bikini Bottom Genetics

Answer Key

1.	Ho	He	Ho	He	Ho
He	Ho	He	Ho	Ho	Ho
	Ho				

Purebreds - TT, DD, BB, FF, ff, dd, bb, tt Hybrids - Dd, Bb, Ff, Tt

2. Yellow body	Yellow body	Blue body
Square shape	Square shape	Round shape

3. Tall-TT or Tt Short-tt

Pink - PP or Pp Yellow - pp
4. $\mathrm{S} \mathrm{Ss}_{\mathrm{Ss}}^{8} \mathrm{Ss}$ A. SS - square shape, Ss - square shape, and ss - round shape
B. 2 out of 4 or 50%
C. 2 out of 4 or 50%

NOTE: Some of your students may feel that the roundpants gene should be the dominant trait as SpongeBob's TV parents are both roundpants. However, these are only his parents on the TV show and his real parents are both heterozygous for squarepants.
5. $\quad \mathrm{P} \stackrel{\mathrm{P}}{\mathrm{PF} \stackrel{n}{\mathrm{Pp}}_{\mathrm{P}}^{\mathrm{P}}}$
p $\mathrm{Pp} \mid \mathrm{pp}$
A. PP - pink body, Pp - pink body, and pp - yellow body
B. 3 out of 4 or 75%
C. 1 out of 4 or 25%
6.

	b	b
	Bb	Bb
	Bb	Bb

A. Bb - light blue skin
B. 100%
C. 0%
D. Squidward's children would not be considered purebred, since each would have a gene pair made up of a dominant gene and a recessive gene.
7.

A. TT - tall eyeballs or Tt - tall eyeballs
B. The hospital must have made a mistake, since the genotype " t " would not be possible based on the genotypes of Mr. and Mrs. Krabbs.
NOTE: Students may come up with other possible scenarios, such as Mr. Krabbs not really a homozygous tall-eyed crab or a mutation. A few of my students suggested that Mr. Krabbs might not be the father!

NOTE: Some of your students may comment that Mr. Krabbs was married to a whale. However, this was only for the TV show and he is happily married to a beautiful crab in real life. (Ok, so it's not "real" life!)

Bikini Bottom Genetics 2

Answer Key:

1. A - long nose, B - blue body, C - squarepants, D - round eyes, E - round eyes, F - stubby nose, G roundpants, h - yellow body
2. A - Yy \& YY, B - ss, C - rr, D - LL \& Ll, E - ll, F - RR \& Rr, G - SS \& Ss, H - yy
3. $\mathrm{A}-\mathrm{Rr}, \mathrm{B}-\mathrm{SS}, \mathrm{C}-\mathrm{LL}, \mathrm{D}-\mathrm{Y} \mathrm{y}$

4A - See square at right, Gerdy's genotype $=\mathrm{Ss}$,
4B - BillyBob's genotype $=$ Ss
$4 \mathrm{C}-\mathrm{SS} \& \mathrm{Ss}=$ squarepants and $\mathrm{ss}=$ roundpants

	S	S
S	SS	Ss
s	Ss	SS

D-75\%
4E-25\%
$5 \mathrm{~A}-$ Wilma $=\mathrm{Rr}$, Wilbur $=\mathrm{RR}$
5B - See square at right

$5 \mathrm{C}-\mathrm{RR} \& \mathrm{Rr}=$ round eyes
5D-100\%
5E-0\%
6. The Punnett square shows that they would have a 50% chance (2 out of 4) for a little sponge with a blue body color.
7. Since both people are recessive, the Punnett square shows that they have 0% chance for a child with a long nose.
8. SpongeBob's aunt would have to marry a purebred long nosed man (LL) in order to have the best chances
 for long-nosed children.

Bikini Bottom - INCOMPLETE DOMINANCE ANSWER KEY

ANSWER KEY:

1. Red - RR, Blue - BB, Purple - RB

2A. RB - purple
2B. 0%
2C. 100%
2D. 0%
3A. RR - red, BB- blue, RB - purple
3B. 25\%
3C. 50%
3D. 25%
4.A. RB - purple, BB - blue

4B. Purple - 50 plants, Blue - 50 plants, Red - 0
5A. YY -yellow, BB - blue, YB - green

5A. YY -yellow, BB - blue, YB - green
5B. 25\%
5C. 25%
5D. 50%
6A. YY - yellow, YB - green
6B. 50%
6C. 0%
6D. 50%
7A. YB - green
7B. Yellow - 0 , Blue - 0 , Goobers - 100
8A. YB - green, BB - blue
8B. Yellow - 0, Blue - 50, Goober - 50

