5.1 Radioactivity \& Nuclear Equations

SCIENCE 10
unit 4:physics
CARBON DATING
WHERE HALF YOU BEEN ALL MY LIFE?

NAME:
book 3: Radioactivty

5.1 : RADIOACTIVITY \& NUCLEAR EQUATION\&

Isotopes

- Isotopes are versions of an element with the same, diff atomic \#(\#or p^{+}) but different \# of n° (mass \#)

\square Because the number of protons is the same for all atoms of an element it is the number of neutrons that determines the mass of the isotope
\square Isotopes are commonly named by their element and mass \# $\left(\# p^{+}+\# n^{\circ}\right)$
\square Example: carbor-14 is an isotope of carbon with a mass
of 14 . So, it has 6 protons and periodic $14-6=8$ neutrons.
ATOMIC $\#$ of p^{+}(from P.T.)

$$
\text { MASS \# }=\# p^{-1}+\# n^{0}
$$

Carbon-13)
$7^{\text {neutrons }}$
ne Standard Atomic Notation
Standard atomic notation (SAN) is how we represent different isotopes in nuclear reactions:


```
Subatomic Particles
- Nuclear reactions also commonly include subatomic particles (neutrons, electrons which can be shown in SAN.


How are Nuclear Reactions Different from Chemical Reactions? 5.1 worksheets Parts 1 \& 0 - Chemical reactions must obey the law of conservation of mass
- Nuclear reactions DO NOT OBEY the law of conservation of mass because atomic nuclei can lose or gain subatomic particles, including protons and neutrons, and become other elements/ isotopes as a result
\(\square\) Nuclear reactions can also cause the transformation of tiny amounts of mass into energy (usually heat), according to the famous equation:
\[
\text { cording to the famous equation: } \times \text { speed of light }{ }^{2}
\]
\[
\text { or, } \mathrm{E}=m \mathrm{C}^{2}
\]
- The mass lost in this way is much Smaller( than a single subatomic particle, so the total number of protons and neutrons remains the same

\section*{Nuclear Equations}
- The unstable radioactive isotope that decays in a nuclear reaction is called the parent isotope \(\qquad\) , think of it like the reactants in a chemical reaction
- The stable isotope that results from radioactive decay in a nuclear reaction is called the daughter isotope \(\qquad\) , the products in a chemical reaction
\(\square\) Like chemical reactions, we can show the radioactive decay in nuclear reactions with nuclear equations:

iodine- 131 decayed into Xenon -131 and lost an \(e^{-}{ }_{2}\)

\section*{Rules for Completing Nuclear Reactions}

We need to obey the following rules when completing nuclear equations:
1. The sum of the mass numbers_cannot change: the total atomic mass in the parent and daughter isotopes, and decay products must be equal.
2. The sum of the atomic numbers cannot change: the total number of protons in the parent and daughter isotopes, and decay products must be equal.


\section*{Alpha Particles}
- Radiation created when an unstable atom decays and releases a helium NuCleUS is called an alpha porticle
- Alpha particles are made up of \(\partial\) protons and \(\partial\) neutrons, so they have a mass \(\#=4\).
\(\square\) Because they have 2 protons and NO electrons, alpha particles have a +2 charge
- We represent alpha particles with the Greek lower case letter alpha ( \(\alpha\) ) or He in SAN: \(\int_{\text {mass }=2}^{4} \alpha \underset{2}{2} \overbrace{\text { mass }}^{4}{ }_{2}^{4} \mathrm{He}\)



\section*{Gamma Rays}
- Radiation created when an unstable atom releases excess oneray as high energy light \(\qquad\) is called \(\qquad\) gamma radiation
\(\square\) Atoms that release gamma rays do not give off proton) or nevtrons, so the elements DO NOT CHANGE
- Because they are a form of light, gamma radiation has an extremely small mass (far smaller than we can measure in atomic mass)
ㅁ We represent gamma radiation with the Greek lower case letter gamma \((\gamma)\) in SAN: \(\quad \begin{aligned} & 0 \\ & 0\end{aligned}\) \({ }_{27}^{60} \mathrm{CO}^{*} \begin{gathered}\text { (excited) } \\ \text { (eqh erergy } \\ 27 \\ 60 \\ \mathrm{Co}\end{gathered}\)

Example: Write an equation for the gamma dec ay of potassivm - 4).
\[
{ }_{19}^{40} K^{*} \rightarrow{ }_{19}^{41} K+{ }_{0}^{0} \gamma
\]

\section*{STEPS:}
1. Write the parent isotope in SAN. Use an asterisk to denote that it is high energy.
2. Put an arrow after the parent isotope
3. Complete the daughter isotope as follows: keep it the same as the parent isotope.
4. For the other product, add a gamma particle in SAN
5. Make sure that atomic masses and atomic numbers are balanced.

Summary
\begin{tabular}{|c|c|c|c|}
\hline & Alpha & Beta & Gamma \\
\hline Symbol & \(\int_{2}^{4} \alpha\) OR \(4_{j}^{4}\) He & 0 \\
\hline\(-1 \beta\) or \({ }_{-1}\) e & 0 \\
\hline Description & helivm nuclevs & electron & gamma ray \\
\hline Mass & 4 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|} 
& \(2 \cdots \cdots\) & \(0 \quad 1\) \\
\hline Description & helium nucleus & electron & gamma ray \\
\hline Mass & 4 & 0 & 0 \\
\hline Charge & +2 & -1 & 0 \\
\hline Penetration & & & \\
\hdashline- & Paper & Aluminum & Lead \\
\hline
\end{tabular}

Look at your Data Page:
RADIOACTIVITY SYMBOLS
```

