SCIENCE 10

FINAL EXAM REVIEW BOOK 4

THE FORMATION OF THE UNIVERSE CAN BE EXPLAINED BY THE BIG BANG THEORY.

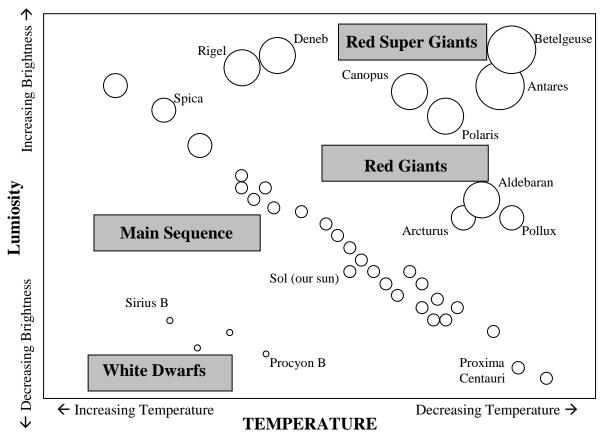
NAME:BLOCK:

Universe 101 Practice Test Questions

Part I – Multiple Choice – Circle your answer AND fill in the blank to the left of each question 1. Which of the following is supported by evidence from red-shifted starlight? a. galaxies are not moving b. galaxies are generally moving away from each other c. galaxies are generally moving toward each other d. movement of galaxies cannot be measured due to the "shifting" of star light 2. What does much of the evidence for the big bang theory depend on? a. accepting ideas that you cannot understand b. correctly interpreting all of the new data gathered with ever-improving technology c. reading as much as you can about space and believing what you read d. coming up with creative ideas and seeing if scientists will think that they are true 3. Light elements form in big bang → nuclear fusion begins, stars are formed → ____ → supernovas eject heavy elements which get incorporated into planets forming around new stars. Which of the following statements best fills in the blank for the life cycle of high mass stars? a. nuclear fusion stops, stars turn into black holes b. nuclear fusion stops, stars enter the main sequence c. lighter elements continue to fuse into heavier elements until the star runs out of lighter elements d. heavier elements continue to fuse into lighter elements until the star runs out of heavier elements 4. Which of the following is **NOT** a major evidence of the Big Bang Theory? a. the stretching out of starlight c. the leftover energy from the big bang d. all of these are major evidences of the big bang b. the fact that most galaxies are spiral 5. What does Cosmic Background Radiation have to do with the big bang theory? a. it is part of the theory that has never been explained b. it is leftover radiation from the big bang that was spread all over during universe expansion c. it was radiation in space that got moved out of the way as the universe expanded d. it is when blue-shifted waves change and suddenly become red-shifted waves 6. Which of the following best represents the life cycle of our sun? a. birth \rightarrow angry teenage years \rightarrow adulthood \rightarrow old person \rightarrow death \rightarrow this is the wrong answer b. nebula \rightarrow protostar \rightarrow main sequence \rightarrow red giant \rightarrow planetary nebula \rightarrow white dwarf c. nebula \rightarrow protostar \rightarrow main sequence \rightarrow red super giant \rightarrow supernova \rightarrow black hole

d. main sequence \rightarrow red giant \rightarrow red super giant \rightarrow white dwarf \rightarrow supernova \rightarrow black hole

Use the following spectra of hydrogen to answer the next two questions.


	Spectrum of hydrogen on Earth:	
Τ.		DI.
R		Blue
	Spectrum of hydrogen from a distant galaxy:	
R		Blue
	How would an astronomer explain the difference between the two spectra sho	own above?
	a. hydrogen gives off light differently if the gravity of the star is large	
	b. light traveling through space is warped by the vacuum	
	c. the distant galaxy is traveling away from us, stretching its light waves	
	d. the distant galaxy has a slightly different kind of hydrogen being fused in	its stars
	Which of the terms below <i>best</i> describes the spectrum of hydrogen from the d	listant galaxy?
	a. reflected c. four-shifted	
	b. red-shifted d. blue-stretched	
	How does the data collected from starlight support the Big Bang Theory? It s	shows that
	a. most objects in space are moving away from one another	
	b. the universe is collapsing again	
	c. the Big Bang happened slowly over millions of years	
	d. most of the light from objects in space is "blue shifted"	
	. What evidence do we have that nuclear fusion is an ongoing process in the c	ore of stars?
	a. powerful telescopes allow us to view the nuclear fusion occurring	
	b. scientific study reveals that star cores have temperatures hot enough for n	uclear fusion to occur
	c. studies have shown that Earth's core is similar to the core of the sun	
	d. the leftover energy found spread throughout the universe is evidence of nu	uclear fusion in stars
	A high-power telescope scans a patch of space and detects several elements, esence of carbon in this region suggests that	including carbon. The
	a. life exists in this region	
	b. you are likely to find either stars or leftover stardust in this region	
	c. the telescope is most likely malfunctioning	
	d. this region of space has been untouched since the big bang	

12. Which of the create on the rig	e following most accur ht?	rately pairs up the eve	ents on the left with th	e elements that
nuclear f	= heaviest elements usion = medium eleme as = lightest elements	ents nuclea	ng = medium elemen r fusion = lightest ele ovas = heaviest eleme	ments
nuclear f	= lightest elements usion = heaviest eleme as = medium elements	ents nuclea	ng = lightest element ar fusion = medium el novas = heaviest elem	ements
13. Most human explanation diff	cultures have explanaerent?	ntions for the origin of	f the universe. How i	s the scientific
a. all scienti	sts agree on one theory	and therefore no fur	ther research is neede	d
b. it cannot l	e changed, unlike mo	st other explanations		
c. it relies or	n evidence from starlig	tht and other types of	radiation	
d. it is widel	y accepted by all cultu	res, religions and org	anizations	
Use this time line of	the universe (which sp	ans a ridiculously larg	ge amount of time) to a	answer the next
A	В	C	D	E
	+	+	+	
20 billion years ago	15 billion years ago	10 billion years ago	5 billion years ago	Present day
14. Which of the	e following statements	best describes when	the big bang occurred	1?
a. between p	oints 'A' and 'B'	c. between poi	nts 'C' and 'D'	
b. between p	ooints 'B' and 'C'	d. sometime af	ter point 'E'	
15. Which of the	e following best descri	bes the big bang?		
a. all matter	in the universe expand	led outward from a ti	ny area	
b. all matter	in the universe was cr	eated in its current lo	cation	
c. several ga	laxies collided togethe	er and exploded, creat	ing matter	
d. the Earth	has gotten cooler since	e its original formation	n	
16 What has be	en happening to the m	atter in the universe s	ince the hig hang occ	urred?
	ge has happened to ma		mee the big bung bee	urrea.
	s moved outward and o		s and stars	
	of the matter in the ur	•		
	contracting and coming			
				haory?
	e following is the <i>best</i> ef based on faith	c. it seems to n		11001 y !
a. 11 15 a UCII	er based on railii	c. it seems to i	nanc schsc	

d. evidence supports it

b. they trust other scientists

Use the Diagram Below to answer questions 18-20

18. Of the following stars, which one is **the hottest**?

a. Canopus

c. Sirius B

b. Sol

d. Deneb

19. Of the following stars, which is **fusing hydrogen into helium?**

a. Canopus

c. Sirius B

b. Sol

d. Deneb

20. Based on the HR diagram, which is the correct order of star types **from dimmest to brightest**?

- a. White Dwarfs \rightarrow Giants \rightarrow Super Giants
- b. White Dwarfs \rightarrow Super Giants \rightarrow Giants
- c. Giants \rightarrow Super Giants \rightarrow White Dwarfs
- d. Super Giants \rightarrow Giants \rightarrow White Dwarfs

21. Which of these subjects should I study to *best* learn about the creation of elements *heavier than iron*?

- a. stars undergoing supernova explosions and the energy involved in such explosions
- b. the earliest moments in the history of our universe, right after the big bang occurred
- c. the core of our sun and the nuclear fusion that occurs there
- d. the development of a protostar and its eventual transformation into a main sequence star

 . 22		s the main sequence it will become either aether it was a low mass or high mass star.	or a
	a. red super giant, white dwarf	c. red giant, red super giant	
	b. protostar, neutron star	d. planetary nebula, white dwarf	
 23	3. Which of the following is evidence	that the universe is expanding ?	
	a. cosmic background radiation		
	b. red-shifted starlight		
	c. the amount of protons in a hydrog	gen atom	
	d. sound being stretched out or com	pressed by a car driving down the road	
 . 24	. What do we know about a star if it h	nas a lot of Hydrogen in its core?	
	a. that it is young and <i>has not</i> left th	ne main sequence	
	b. that it is young and has left the m	nain sequence	
	c. that it is old and about to leave the	e main sequence	
	d. that it is old and about to superno	va	
 di	•	e accurate telescope were developed and it happened ng closer and moving farther away, what would hap	
	a. the new data would be ignored be	cause it does not support current evidence of the big	bang
	b. the big bang theory would be aba	ndoned and scientists would start over using new tel	escopes
	c. theories about the universe's original	ins would need to be changed to include any new ev	idence
	d. galaxies would begin to collide w	with one another at a faster rate	
26	6. What do we know about a star if it h	nas a lot of iron in its core?	
	a. that it is young and <i>has not</i> left th	ne main sequence	
	b. that it is young and has left the m	nain sequence	
	c. that it is old and about to leave the	e main sequence	
	d. that it is old and about to superno	va	
 . 27	. Which of the following <i>best</i> explain	s the presence of heavy elements here on Earth?	
	a. heavy elements were created from	n fusion in the Earth's core	
	b. heavy elements were made from	the big bang and later moved out to collect into plane	ets
	c. heavy elements were placed on E	arth after being sucked through a black hole	
	d. heavy elements from the explosion	on of an ancient star clumped into planets as our star	system formed

Part II - Written Portion

b. The other force is...

1. *Explain* how red shift and cosmic background radiation are evidences of the big bang. Don't just explain the terms – tell me how they are evidences of the big bang! (4 points) a. Red Shift is evidence of the big bang because... b. Cosmic Background Radiation is evidence of the big bang because... 2. What two elements did the big bang create *and* where did the rest come from? (2 points) a. The big bang created... b. The rest of the elements came from... 3. What energy-producing event is occurring in the core of main sequence stars? (1 point) 4. Name three things that an astronomer can know about a star just by analyzing its light? (3 points) 5. When we analyze stars using a spectroscope, each unique "barcode" that we see represents a different (think of our lab and what we were looking at) (1 point) 6. What two forces must a star constantly balance in order to stay alive? Also, be sure to label these two forces on the diagram to the right (4 points) a. One of the forces is...

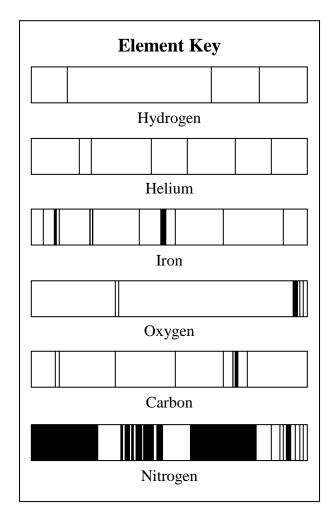
A star balancing two forces

7. **Draw** and **label** a diagram describing the Doppler Effect. Be sure to **be descriptive enough** in your diagram so that someone that knows nothing about the Doppler Effect would be able to understand it (3 points)

Spectroscope Analysis – use the element key below to answer the next few questions

8.	You analyze	a star'	's light	using a	spectrosco	pe
	and see the	follow	ing sp	ectrum:		

Which two elements are in this star? (1 point)


Is this star younger or older and why? (2 points)

9. You analyze a star's light using a spectroscope and see the following spectrum:

Which two elements are in this star? (1 point)

Is this star younger or older and why? (2 points)

BONUS QUESTIONS (optional) – Use the periodic table on the back of this test to answer these questions.

- 1. What would you get if you fused Na and F?
- 2. Name three different elements that can be fused together to make Silver.
- 3. Which element would be the result of the following craziness? (Fr + Y + Co + O + K) (Ba + Co + N)

The Periodic Table of the Elements

(Use this as a reference if needed)

Francium (223)	87	Cesium 132.90545	Cs	55	Rubidium 85.4678	Rb	37	Potassium 39.0983	X	19	Sodium 22.989770	Na	11	Lithium 6.941	Li	သ	Hydrogen 1.00794	Η	1
Radium (226)	88	Barium 137.327	Ba	56	Strontium 87.62	\mathbf{Sr}	38	Calcium 40.078	Ca	20	Magnesium 24.3050		12	Beryllium 9.012182	Be	4			
Actinium (227)	89	Lanthanum 138.9055	La	57	Yttrium 88.90585	Y	39	Scandium 44.955910	Sc	21									
Rf Rutherfordium (261)	104	Hafnium 178.49	Hf	72	Zirconium 91.224	\mathbf{Zr}	40	Titanium 47.867	Ti	22									
Db Dubnium (262)	105	Tantalum 180.9479	Ta	73	Niobium 92.90638		41	Vanadium 50.9415	<	23									
Seaborgium (263)	106	Tungsten 183.84	¥	74	Molybdenum 95.94	Mo	42	Chromium 51.9961	\mathbf{Cr}	24									
Bh Bohrium (262)	107	Rhenium 186.207	Re	75	Technetium (98)	Tc	43	Manganese 54.938049	Mn	25									6
Hs Hassium (265)	108	Osmium 190.23	O _S	76	Ruthenium 101.07	Ru	44	Iron 55.845	Fe	26									oc uno
Mt Meitnerium (266)	109	Iridium 192.217	Ir	77	Rhodium 102.90550	Rh	45	Cobalt 58.933200	Co	27									
(269)	110	Platinum 195.078	Pt	78	Palladium 106.42	Pd	46	Nickel 58.6934	Z	28									CICICC
(272)	111	Gold 196.96655	Au	79	Silver 107.8682	$^{ m Ag}$	47	Copper 63.546	Cu	29									II IICCO
(277)	112	Mercury 200.59	$_{ m Hg}$	80	Cadmium 112.411	Cd	48	Zinc 65.39	Zn	30									(1)
	113	Thallium 204.3833	1	81	Indium 114.818	In	49	Gallium 69.723	Ga	31	Aluminum 26.981538	Al	13	Boron 10.811	В	5			
	114	Lead 207.2	Pb	82	Tin 118.710	Sn	50	Germanium 72.61	Ge	32	Silicon 28.0855		14	Carbon 12.0107	C	6			
		Bismuth 208.98038	Bi	83	Antimony 121.760	Sb	51	Arsenic 74.92160	As	33	Phosphorus 30.973761	P	15	Nitrogen 14.00674	Z	7			
		Polonium (209)	P ₀	84	Tellurium 127.60	Te	52	Selenium 78.96	Se	34	Sulfur 32.066	S	16	Oxygen 15.9994	0	∞			
		Astatine (210)	At	85	Iodine 126.90447	Ι	53	79.904	Br	35	Chlorine 35.4527	<u>C</u>	17	Fluorine 18.9984032	স	9			
		Radon (222)	Rn	86	Xenon 131.29	Xe	54	Krypton 83.80	Kr	36	Argon 39.948	Ar	18	Neon 20.1797	Ne	10	Helium 4.003	He	2

(262)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	(237)	238.0289	231.03588	232.0381
Lawrenciun	Nobelium	Mendelevium	Fermium	Einsteinium	Californium	Berkelium	Curium	Americium	Plutonium	Neptunium	Uranium	Protactinium	Thorium
\mathbf{Lr}	N _O	Md	Fm	Es	\mathbf{Cf}	Bk	Cm	Am	Pu	Np	U	Pa	Th
103	102	101	100	99	98	97	96	95	94	93	92	91	90
174.967	173.04	168.93421	167.26	164.93032	162.50	158.92534	157.25	151.964	150.36	(145)	144.24	140.90765	140.116
Lutetium	Ytterbium	Thulium	Erbium	Holmium	Dysprosium	Terbium	Gadolinium	Europium	Samarium	Promethium	Neodymium	Praseodymium	Cerium
Lu	Yb	Tm	Er	H_0	Dу	Tb	Gd	Eu	Sm	Pm	Nd	Pr	Ce
71	70	69	68	67	66	65	64	63	62	61	60	59	58