SCIENCE 10
unit 3 Physics

book : : kinetic \& potential energy

NAME: \qquad BLOCK: \qquad
 part a - intro to energy \ddagger kinetic energy
Brainstorm:
What is WORK?

MOTORIZED TRICYCLE
DOING WORK
when a force is applied (push/pull) to an object
that causes it to change its motion.

What is ENERGY?

- need energy to DO WCRK
- capacity to be able to change an objects motion
"in physics, we say that if you have done work , ENERGY is transferred to another object or changed

Energy Definition
Energy is the ability to do work which means that it can an object over a distance.
Energy has no mass or volume (le:"Energe" is not
Types of Energy meter

Energy Type		Definition \& Example
	Mechanical	The energy of motion of objects that are larger than atoms and molecules. Any object that is moving has mechanical KE
	Radiant	The energy of electromagnetic waves that travel or "radiate" from an energy source.
		light bulbs (radiate UV radiation, visible light and infrared radiation) the Sun radiates the entire electromagnetic spectrum (solar energy)
	Thermal	Commonly known as "Heat Energy"; Energy of random motion of the particles tha make up a substance. particles of matter are always moving
	Electrical	Energy of electrons moving along a wire or other conductor. A load (any electrical appliance) changes the electrical KE into another form, such as radiant energy (light bulb)
	Sound	Energy of vibrations or disturbances of teh particles that make up matter. Travels through substances as a pressure wave. As the wave passes, particles vibrate + collide
	Elastic	Energy stored in a stretched or compressed object, not just an elastic band or spring.
		eg. soles of your shoes, tennis ball + racquet
	Chemical	energy stored in chemical bonds. much of human society relies on the chem PE stored in fossil fuels.
		eg firefly: CPE--> light
	Gravitational	energy due to the position of an object relative to a reference point, such as the ground.
		eg. a roller coaster at the top of a large hill has more GPE than it does at the bottom
	Nuclear	Energy stored within the nucleus of an atom. Nuclear processes can release an enormous amount of energy
		eg nuclear power plant, radioactive decay
	Electric	energy stored by a separation of positive an negative charges
		an electrochemical cell, or battery
	Magnetic	A compass needle moves beause it's magnetic and is attracted by Earth's magnetic field. If you prevent the needle from moving, it has magnetic PE, because it now h the "potential" to move.
		the "potential" to move.

What is Kinetic Energy?
Kinetic Energy $(\mathrm{KE})_{\text {isticenergy of an object ass }}$ reatut fits motionThe name comes from the Greek word "kinesis" meaning "motion"
\square Kinetic energy can be transferred between objects when they $K E \rightarrow K E$ collide, or transformed into other types of energy.

Units
(think of billiard balls colliding,
diff. Kind $\mathrm{KE} \rightarrow$ sound pool cue \longrightarrow ball, \longrightarrow ball $_{2} \longrightarrow$ ball $_{3}$
$K E \rightarrow$ so
In science, we use SI (system international) units.
Length / distance: meters (m)

$$
\begin{aligned}
& 100 \mathrm{~cm}=1 \mathrm{~m} \\
& 1000 \mathrm{~m}=1 \mathrm{~km} \\
& 1000 \mathrm{~g}=1 \mathrm{~kg}
\end{aligned}
$$

$$
K E \rightarrow P E \rightarrow K E \underset{\substack{\text { sound } \\ \text { sound }}}{\rightarrow} K E \rightarrow K E \text { sound }
$$

Mass: kilograms (kg)
Time: seconds (s)
$60 \mathrm{~s}=1 \mathrm{~min} 60 \mathrm{~min}=1 \mathrm{mr}$The SI unit of kinetic energy is the \qquad J

MassThe amount of matter in an object defines its massExample: 1 L of a gas has less mass than 1 L of a liquid because it contains fewer particles (less matter)

(fewer particles= less mas)

The mass of an object \qquad NOT change unless something is \qquad removed or added to it .

PRRACTICE 1. Determine the skateboarder's velocity during the time intervals below.

$$
\begin{aligned}
& \text { Skateboarder's Velocity from Time o-2s: } \\
& \vec{V}=\frac{\Delta \vec{d}}{\Delta t}=\frac{\vec{d} f-\vec{d}_{i}}{t_{f}-t_{i}}=\frac{2 m-0 m}{2 s-0 s} \\
& \vec{V}=\frac{2 \mathrm{~m}}{2 \mathrm{~s}}=1 \mathrm{~m} / \mathrm{s} \overrightarrow{\text { East }} \\
& \vec{V}=\frac{\Delta \vec{d}}{\Delta t}=\frac{7 m-2 m}{5 s-2 s} \\
& \vec{v}=1.6 \overline{\mathrm{c}} \mathrm{~m} / \mathrm{s} \\
& \vec{v}=1.7 \mathrm{~m} / \mathrm{s} \overrightarrow{\text { alt }}
\end{aligned}
$$

2. Sketch a graph of the skateboarder's position versus time. Make sure to title the graph and the

Calculating Kinetic Energy
The formula for kinetic energy is:
always make

$$
\begin{aligned}
& \text { this form } \\
& \text { chert) }
\end{aligned}
$$

Tips for Using the Formula
Remember from math that there is a correct order of operations (BEDMAS)
This means we need to:

1. SQUare the velocity $\left(v^{2}\right)$
brackets exponents
2. multiply the numbers

Reminders for Solving Calculations

1. Follow a three-step method: 1) formula, 2) substitute values into brackets and perform calculations, and 3) write out the final answer (put a box or under line/ci rale)
2. Remember that for full marks you need to show your work and your answer must have UNTTS
3. The number of significant figures in your answer is determined by the number with the *3 LEASL amount of significant figures in your calculations Lowest
4. Watch out for signs ($+/-$)!

$$
L_{0}-y_{12} \text { nit is }
$$

$$
\begin{aligned}
& \ll \text { velocity } \\
& \begin{array}{l}
\text { is scuaret } \\
\text { (not } m, C r \frac{1}{2} \text {) }
\end{array} \\
& K E=\frac{1}{2} m(\sqrt{(2)})
\end{aligned}
$$

What Does the Formula Mean?
\square Remember that the kinetic energy of an object is the result of the force applied to it in order to putitin MODION) (or to change its motion)

- The amount of force required to move an object depends on its MaSS, and the vel loci it yon the object, and this is why the formula includes mass and velocity $=>K E=\frac{1}{2} m \cdot v^{2}$
\square Notice that the KE of an object depends on its \qquad multiplied by itself)
- This means that an object travelling a $2 \mathrm{~m} / \mathrm{s}$ has 4 times the kinetic energy of an object travelling at $1 \mathrm{~m} / \mathrm{s}$ (because it is double the velocity)

Other Versions of the Same Formula

The formula can be changed around to solve for mass or velocity like this:
 before you find the root

With this mass equation, don't forget to square the velocity first then multiply by $\frac{1}{2}$

$$
K E=\frac{1}{2} m v^{2}
$$

You will ALWAYS have therese formulas given to you (they are on your data page)
You will ALWAYS have these formulas given to you (they are on your data page)

$$
\frac{K E}{V^{2} \frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}} \frac{m}{v^{2}}
$$

$V=\sqrt{\left(\frac{K E}{\frac{1}{2} m}\right)}$	$m=\frac{K E}{\frac{1}{2} V^{2}}$
With this velocity equation, you will need to solve everything inside the Solve root (KE divided by half the mass)	With this mass equation, don't forget to SQuare 4 he velocity first then multiply by $\frac{1}{2}$

$$
\rightarrow K E=\frac{1}{2} m v^{2}
$$

Practice: A 46 kg cheetah has a kinetic energy of
$15,500 \mathrm{~J}$, how fast is it running?

Practice: What is the mass of a peregrine falcon flying at $88.9 \mathrm{~m} / \mathrm{s}$ with a kinetic energy of 1780 J ?
$m=?$
$\begin{aligned} & m=46 \mathrm{~kg} \\ & k E=15,500 \mathrm{~J} \\ & V=? \\ & V=\sqrt{\frac{K E}{\frac{1}{2} m}} \\ &=\sqrt{\left(\frac{15,500}{\frac{1}{2} \cdot 46}\right)} \text { istyour. } \\ & \text { Known. }\end{aligned}$

$$
\begin{aligned}
& =15500 \div(1 \div 2 \times 46)=673.913 \ldots \ldots=\frac{(1780)}{3951.605} \\
& =\sqrt{673.913 \ldots}
\end{aligned}
$$

$$
=\sqrt{673.913 \ldots \ldots}
$$

$$
V=25.9598 \mathrm{~m} / \mathrm{s}
$$

$$
m=0.45044988 \mathrm{~kg}
$$

$$
\begin{array}{r}
=2 \mathrm{sf.} . \\
V=26 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
\begin{aligned}
& m=0.4504498 \\
& m=0.450 \mathrm{~kg}
\end{aligned}
$$

Summary of KINETIC ENERGY

Kinetic energy $\left(E_{k}\right)$ is the energy of motion, which may be in any direction (like vertical or horizontal), or spinning motion. To calculate the E_{k} of a moving object, use the following formula:

$$
E_{k}=1 / 2 \text { mass } \times \text { velocity }{ }^{2} \text { or } E_{k}=1 / 2{m v^{2}}^{2}
$$

Steps for solving energy problems:

1. Diagram. What variables do you have? what is

2. Substitute in values, and solve

Where:
Mass (m) is measured in kilograms (kg)
Velocity (v) is measured in meters per second (m / s)
E_{k} is measured in joules (J)
Note: To earn full marks when solving science word problems, you must Show your work:

1. State the unknown value. (What are you asked to find?)
2. List the information given in the problem (all the known values)
3. Identify a formula that may help you solve it.
4. Manipulate the formula so that the unknown is on the left side.
5. Substitute in the known values.
6. Calculate the answer. (Yes, now you may pick up your calculator)
7. State your answer with the correct units

Example Problem:

Roger Federer serves a tennis ball with a velocity of $35.0 \mathrm{~m} / \mathrm{s}$. If the ball has a mass of 0.150 kg , what is the kinetic energy $\left(\mathrm{E}_{\mathrm{k}}\right)$ of the ball?

Known Values:

$$
\begin{aligned}
& \mathrm{m}=0.150 \mathrm{~kg} \\
& \mathrm{v}=35.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Formula: $\mathbf{E}_{\mathbf{k}}=1 / 2 \mathrm{mv}^{2}$

$$
\begin{aligned}
& =0.5 \times 0.150 \times 35.0^{2} \\
& =0.5 \times 0.150 \times 1225 \\
& =91.875 \text { (not rounded) } \\
& =91.9 \mathrm{~J} \text { (rounded, with units) }
\end{aligned}
$$

Assignment \#1: Complete the following worksheet in the space provided below

Science 10 - Physics

Name: \qquad KEY
Date: \qquad

4.1 Worksheet

Part 1 - Position vs. Time Graphs. Hint: for all questions, moving to the right/east is positive (+) and moving to the left/west is negative (-).

1. Use the following position-time graph showing the motion of a gymnast on a balance beam to match each descriptor below with the corresponding part of the graph. Each part of the graph may be used as often as necessary. Assume the centre of the balance beam is the reference point (origin).

a) She stands still for 3 s .
b) She moves even faster to the right for 1 s .
\qquad c) She moves very slowly to the left for 2 s .
\qquad d) She moves more quickly to the left for 4 s .
\qquad e) She ends up 1 m left of the centre of the balance beam.
\qquad f) She starts 2 m to the right of the centre of the balance beam.
2. Use the following position-time graph, showing the motion of two runners, to answer the questions below.
a) What does the y-intercept represent?

The position that the runner starts
b) Do the runners start at the same place?

NO: Runner B starts Further ahead
c) At about 2 s , which runner is running faster? How can you tell?

At ∂s, Runner A is running faster, since

their position is changing more quickly (slope) Time (s)
d) What occurs at 5 s ?

Both runners are at the same position
e) At 10 s , which runner is ahead?

Runner A
3. Use the following data table, showing a car's recorded positions over 7 seconds, to answer the questions below. Assume om is the reference point.
a) Label the x-axis with Time (s) and the y-axis with Position (m). Use the grid to plot the data points from the data table. Draw a best-fit line through the points.

Time (s)	Position (m)
0	125
1	100
2	75
3	50
4	25
5	0
6	-25
7	-50

b) When was the car 50 m east of the reference point?

$$
3 \text { seconds }
$$

c) What was the car's position at 1 s ?

$$
100 \mathrm{~m} \text { last }
$$

d) Where was the car at 5.5 s ?

$$
-13.5 \mathrm{~m} \quad(12.5 \mathrm{~m} \text { west })
$$

e) Describe the motion of the car during the time interval $2 \mathrm{~s}-4 \mathrm{~s}$.

The car is moving westward towards Om (the origin), with a constant velocity.
4. Draw a position vs. time graph to represent the following scenarios. Title and scale the axes!

Part 2 - Use the data table below to create a graph of velocity vs. time for a car with a mass of 852 kg . Use the graph to answer the questions below. Don't forget to show your work in the space provided.

Time (\mathbf{s})	Velocity $(\mathbf{m} / \mathbf{s})$
0	0
2	6
3	14
5	14
8	2
10	0

5. What is the kinetic energy of the car at time 2 s ?
$v=6 \mathrm{~m} / \mathrm{s}$ (1s.f.)
$K E=\frac{1}{\partial} m v^{2}$
| $K E=15336$
$m=852 \mathrm{~kg}$ (3s.8.)
$K E=$?

$$
\begin{array}{l:l}
K E=\frac{1}{\partial}(85 \partial)(6)^{2} & K E=15336 \mathrm{~J} \\
K E=\frac{1}{\gamma}(85 \partial)(36) & \left(0.1 .5 \times 10^{4} \mathrm{~J}\right)
\end{array}
$$

6. What is the kinetic energy of the car between 3 s and 5 s ?
$v=14 \mathrm{~m} / \mathrm{s}$
(25.f.)
$K E=\frac{1}{\partial} m v^{2}$
$K E=8349_{6}$
$m=85) \mathrm{kg}(35.8)$
$K E=\frac{1}{\partial}(852)(14)^{2}$
$K E=834 a_{b} \mathrm{~J}$
$K E=$?
$K_{E}=\frac{1}{\partial}(852)(196) \quad\left(\right.$ or $\left.8.3 \times 10^{4} \mathrm{~J}\right)$
7. What is the kinetic energy of the car at time 10 s ?
$v=0 \mathrm{~m} / \mathrm{s}$
$m=852 \mathrm{~kg}$ (35.f)
$K E=$?

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& K E=\frac{1}{2}(852)(0)^{2} \\
& K E=O J
\end{aligned}
$$

Part 3 -Word Problems
8. A girl is riding her bike at a velocity of $12 \mathrm{~m} / \mathrm{s}$. She weighs 55 kg and her bike weighs 22 kg . What is the kinetic energy of the girl and her bike?

$$
\begin{aligned}
V & =1 \partial \mathrm{~m} / \mathrm{s} \quad(\partial \mathrm{sf}) \\
m & =55 \mathrm{~kg}+\partial \partial \mathrm{kg} \\
& =77 \mathrm{~kg} \quad(2 \mathrm{si}) \\
K E & =?
\end{aligned}
$$

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& K E=\frac{1}{\gamma}(77)(12)^{2} \\
& K E=\frac{1}{\gamma}(77)(144)
\end{aligned}
$$

$$
1 K E=5544
$$

$$
K E: 5544 \mathrm{~J}
$$

9. Two objects were lifted by a machine. One object had a mass of 4 kg , and was lifted at a velocity of $2 \mathrm{~m} / \mathrm{s}$. The other had a mass of 2 kg and was lifted at a velocity of $3 \mathrm{~m} / \mathrm{s}$. Calculate which object had more kinetic energy while it was being lifted.
(1)

$$
\begin{aligned}
& m=4 \mathrm{~kg} \quad(1 \mathrm{sk}) \\
& V=2 \mathrm{~m} / \mathrm{s} \quad(1 \mathrm{sf}) \\
& k E=?
\end{aligned}
$$

$$
\begin{array}{ll}
K E=\frac{1}{2} M V^{2} & 1 K E=8 J \\
K E=\frac{1}{2}(4)(2)^{2} \\
K E=\frac{1}{2}(4)(4)
\end{array}
$$

10. A moving dog with a mass of 34 kg has a kinetic energy of 25 J . How fast is the dog running?

$$
\begin{array}{l|lll}
m=34 \mathrm{~kg}(\partial s t) \\
K E=25 J(\partial s t) & V=\sqrt{\frac{K E}{\frac{1}{2} m}} & , & V=\sqrt{\frac{\partial 5}{17}} \\
V=? & V=\sqrt{1.47058} \ldots \\
& V=\sqrt{\frac{\partial 5}{\frac{1}{2}(34}} & , & V=1.21267 \ldots
\end{array}
$$

11. A falling elephant with a velocity of $35 \mathrm{~m} / \mathrm{s}$ has a kinetic energy of 1500 J . What is the mass of

$$
\begin{array}{l|llll}
\begin{array}{l}
\text { the elephant? } \\
v=35 \mathrm{~m} / \mathrm{s} \\
k E=1500 \mathrm{~J} \\
k= \\
m=?
\end{array} & m=\frac{k E}{\frac{1}{2} v^{2}} & m=\frac{1500}{\frac{1}{\delta}(1225)} & 1 m=2.4489 \ldots \\
m=\frac{1500}{\frac{1}{2}(35)^{\prime}} & m=\frac{1500}{612.5} &
\end{array}
$$

$$
\begin{aligned}
& \text { (子) } \\
& m=2 \mathrm{~kg} \text { (dst) } \\
& v=3 \mathrm{~m} / \mathrm{s}(1 \mathrm{st}) \\
& K E=\text { ? } \\
& \begin{array}{l:c}
K E=\frac{1}{\partial} m v^{\partial} & \frac{K E=9 J}{\uparrow} \\
K E=\frac{1}{\gamma}(\partial)(3)^{\prime} & \text { MORE iE } \\
K E=\frac{1}{\gamma}(\partial)(9) & \underline{ }
\end{array}
\end{aligned}
$$

12. If a falling water droplet travels at $11 \mathrm{~m} / \mathrm{s}$ and has a kinetic energy of 0.0096 J , what is the mass of the droplet?

$$
\begin{aligned}
& V=11 \mathrm{~m} / \mathrm{s}(\partial \delta \mathrm{~s}) \\
& K E=0.0096 \mathrm{~J} \text { (} \partial s t \text {) } \\
& m \quad m=\text { ? } \\
& m=\frac{k E}{\frac{1}{2} v^{2}} \left\lvert\, m=\frac{0.0096}{\frac{1}{2}(121)}\right. \\
& m=\frac{0.0096}{\frac{1}{2}(11)^{2}}, m=\frac{0.0096}{60.5} \\
& m=0.0001586 \ldots \\
& m=0.00016 \mathrm{~kg} \text { (or } 1.6 \times 10^{-4} \mathrm{~kg} \text {) }
\end{aligned}
$$

13. A box hits the ground with $32,000 \mathrm{~J}$ of kinetic energy. If the box was traveling at $40.0 \mathrm{~m} / \mathrm{s}$ when it hit, what must the mass of the box be?

$$
\begin{array}{llll}
K E=3 \partial 000 \mathrm{~J} & (\partial s f) & m=\underbrace{\frac{1}{\partial} v^{2}} & m=\frac{32000}{800} \\
v=40.0 \mathrm{mys} & (3 s f) & m=\frac{32000}{\frac{1}{\partial}(40.0)^{2}} & m=40 \\
m=? & m=\frac{32000}{\frac{1}{2}(1600)} & m=1
\end{array}
$$

14. Schwab is shot out of a cannon. If his mass is 68 kg and he has a kinetic energy of 706 J , how far does he travel in the first second after leaving the cannon?

$$
\begin{aligned}
& \begin{array}{l}
m=68 \mathrm{~kg}(2 s t) \\
K E=706 \mathrm{~J}(358)
\end{array}\left|\quad V=\sqrt{\frac{K E}{\frac{1}{2} m}} \quad\right| \quad V=\sqrt{20.7647 \ldots} \\
& V=\text { ? } \\
& \left.V=\sqrt{\frac{706}{\frac{1}{2}(68)}} \quad \right\rvert\, \quad V=4.5568 \ldots \\
& v=\sqrt{\frac{706}{34}}
\end{aligned}
$$

schwab travels 4.6 m in the first second after leaving the cannon.
partb-potentialeneRgy

What is Potential Energy?

- Potential energy (PE) is the energy STORED inside of objects because of their position, stresses inside of the object, or their charge
\square The name means that PE stored inside of an object is not useful until it is released and transformed into another type of energy (motion, heat); in other words, it is the "potential" to create other types of energy

Example: a stretched bow contains potential energy that is
$P E \rightarrow K E$ released when the archer releases the bowstring, this becomes LCinetic energy in the arrowThere are several kinds of PE, in Science 10 we will focus on the PE of objects in \qquad Earth's gravity

\square the SI unit of potential energy is the Joule, abbreviated J

$$
\begin{gathered}
\vec{a}=\frac{m / s}{s}=\frac{\frac{m}{s}}{s} \\
\vec{a}=\frac{m}{s^{2}}
\end{gathered}
$$

\square Example: as a rollercoaster climbs up its velocity decreases , when it rides (
Instead their velocities must change by increasing or decreasing: change in $\frac{v e l o c i t y \text { over time is called acceleration measured in meters per second }}{\left(\mathrm{m} / \mathrm{s}^{2}\right.}$ sQuared

\square Remember that mass is the a mount of matter in an object

$$
w=m \cdot g
$$

\square All objects with mass are \qquad a tricacted towards each other by a force known as the larger the masses the \qquad MORE that they attract each otherGravity is the only force we are aware of which acts over the entire Universe: we are attracted to ACL of the masses in the universe and they are attracted to us.

\qquad the \qquad further two objects are apart, so we really only experience one strong gravitational attraction towards the nearest and largest mass (The Earth)

Acceleration of Gravity
All objects with mass are attracted \qquad the Earth's enormous mass by gravity (actually towards

- This causes all objects to accelerate towards the Earth,
 in what is known as the acceleration of gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$ Despite what common sense tells you, the acceleration of gravity does NOT depend on mass: all objects accelerate towards the Earth at the same rate Example: if you dropped a piano and a mouse from the same height (in a complete vacuum) they would both land at the same time

Height
\rightarrow considered to $=\varnothing$ mThe height of an object above the Earth's surface determines how much Potential within the objectThe \qquad greater the height above the Earth's surface, the \qquad mere PE an object has because the acceleration of gravity will act on it for a \qquad Longer time and it will gain more and more kinetic energy (gains mare velocity the further it The SI unit of height is \qquad meters, abbreviated m

The formula for potential energy is:

What Does the Formula Mean?
hat Does the Formula Mean? $\quad \square \mathrm{PE}$ is the Potential
\square On Earth, the acceleration of gravity, is a constant (it never changes)
\square PE changes linearly with the height of the object, so an object with dOUble the height has double the PE, $1 / 2$ the height has $1 / 2$ the PE, and so on:

with an P in height, PE also P

- PE also changes linearly with the MASS, so an object with double the mass has
double the PE, triple the mass has tr iplethe PE, and so on:

$$
\longrightarrow P E=m \cdot g \cdot h
$$

Tips for Using the Formula
There is only one operation in this formula (multiplication so there is no order of operations to worry about
\square Remember that the acceleration of gravity is always $\xrightarrow[\mathrm{s}^{2}]{9.81 \mathrm{~m}}$ on Earth, so this is not something that you need to calculate

SUMMARY of POTENTIAL ENERGY PROBLEMS

Gravitational potential energy $\left(\mathbf{E}_{\mathrm{p}}\right)$ is the energy of a mass due to its position in a gravitational force field. For example: when you hike up a hill, you are moving your mass away from the center of the Earth. You are lifting your mass up inside Earth's gravitational force field, and that means that you could fall back down in the future. Because your mass now has the ability to make things move (you falling), you have more potential energy. You gain E_{p} as you climb.

To calculate the E_{p} of an object (relative to a place where $h=0$), use the following formula:

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

Where:
Mass (m) is measured in kilograms (kg)
Gravitational field strength (g) is measured in newtons per kilogram (N / kg)
Height (h) in measured in metres (m) [note: height is measured from some place where we have decided the height is zero]
E_{p} is measured in joules (J)
Note: To earn full marks when solving science word problems, you must Show your
work. Please refer to the problem solving steps given in class. Don't forget to convert units into the proper base units before calculating.

Example Problem:

A ball of mass 1.30 kg is thrown upward and reaches a height of 24.0 m above the ground. What is the potential energy $\left(\mathbf{E}_{\mathbf{p}}\right)$ of the ball relative to the ground?
Known Values:

$$
\mathrm{m}=1.30 \mathrm{~kg}
$$

$\mathrm{h}=24.0 \mathrm{~m}$
$\mathrm{g}=9.80 \mathrm{~N} / \mathrm{kg}$ (on Earth)
[we can assume we are on Earth unless otherwise mentioned]
Formula: $\mathbf{E}_{\mathrm{p}}=\mathrm{mgh}$
$=(1.30)(9.80)(24.0)$
$=305.76$ (not rounded)
$=306 \mathrm{~J}$ (rounded, with units) worksheet in the space provided below

Part 1 - Use the data table below to create a graph of height vs. time for a model rocket with a mass of 2.45 kg . Use the graph to answer the questions below. Don't forget to show your work in the space provided.

Time (s)	Height (m)
0	0
1	30.00
4	120.0
7	100.0
9	40.00
10	0

1. What is the potential energy of the rocket at time 4 s ?

$$
\begin{array}{ll}
m=2.45 \mathrm{~kg} & (3 \mathrm{sf}) \\
g=9.81 \mathrm{r} / \mathrm{s}^{\circ} & (3 \mathrm{sf}) \\
h=120.0 \mathrm{~m} & (4 s \gamma)
\end{array}
$$

$$
\begin{aligned}
P E & =m g h & & P E=2880 \mathrm{~J} \\
& =(2.45)(9.81)(120.0) & & \left(\text { or } 2.88 \times 10^{3} \mathrm{~J}\right) \\
& =2884.14 & & 1
\end{aligned}
$$

2. What is the potential energy of the rocket at time 7 s ?

$$
\begin{aligned}
& m=2.45 \mathrm{~kg} \quad(35 \mathrm{~s}) \\
& g=9.81 \mathrm{~m} / \mathrm{s} \quad(358) \\
& h=100.0 \mathrm{~m}(458)
\end{aligned}
$$

Part 2 -Word problems

$$
\begin{aligned}
P E & =m g h \\
& =(2.45)(9.81)(100.0) \\
& =2403.45 \\
& =2.40 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

3. A box with a mass of 30 kg is sitting on a shelf 3 m above the ground. What is its potential energy?

$$
\begin{aligned}
m & =30 \mathrm{~kg} \quad(1 \mathrm{st}) & P E & =m g h \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \quad(3 \mathrm{st}) & & \mid 30)(9.81)(3) \\
h & =3 \mathrm{~m} \quad(1 \mathrm{sk}) & & =88 \partial .9
\end{aligned}
$$

4. A rubber ball has 150 J of potential energy and a mass of 0.254 kg . How high is the ball off the ground?

$$
\begin{array}{llll}
P E=150 \mathrm{~J} & (\partial s \gamma) & h=\frac{P E}{m g} & 1 \\
m=0.254 \mathrm{~kg} & (35 \gamma) & h=60.1988 \ldots \\
g=9.81 \mathrm{~m} / \mathrm{s}^{\prime} & (3 \mathrm{sr}) & =\frac{150}{(0.254)(9.81)} & h=6.0 \times 10^{\prime} \mathrm{m} \\
h=? & &
\end{array}
$$

5. A pole vaulter at the top of her jump is 5.90 m above the ground. If her potential energy is 4942 J , what is her mass?
$h=5.90 \mathrm{~m}$ (3 sc)
$P E=4942 \mathrm{~J}$ (Hst)
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sk})$
$m=$?
$m=\frac{P E}{g h}$
$=\frac{4942}{(9.81)(5.90)}$
$m=85.385 \ldots$
6. In 1993, Cuban athlete Javier Sotomayor set the world record for high jump. If his potential energy at the top of the jump was 1970 J , and his mass was 82.0 kg , how high did he jump?
$P E=1970 \mathrm{~J} \quad(386)$
$m=82.0 \mathrm{~kg}$ (385)
$g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad$ (Sst)
$h=$?
$\begin{aligned} h & =\frac{P E}{m g} & & h=2.4489 \ldots \\ & =\frac{1970}{(820)(9.81)} & & h=2.45 \mathrm{~m}\end{aligned}$
7. A can of spinach with mass of 0.14 kg loses 28 J of potential energy falling off of a shelf. How high was the can before it fell?
$m=0.14 \mathrm{~kg}(2 s f)$
$P_{E}=28 \mathrm{~J} \quad\left(2 \mathrm{~s}^{8}\right)$
$g=9.81 \mathrm{~m} / \mathrm{K}^{2} \quad(356)$
$h=$?

$$
\begin{aligned}
k & =\frac{P E}{m g} \quad, \quad h=20.387 \ldots \\
& =\frac{28}{(0.14)(9.8)},
\end{aligned}
$$

8. In a lab activity, a group of students measures the velocity of a model car at $2.5 \mathrm{~m} / \mathrm{s}$ at the bottom of a ramp. The car's starting position at the top of the ramp is 1.00 m above the floor.
a. If the model car had 2.35 J of potential energy at the top of the ramp, what is its mass?

$$
\begin{array}{l|lll}
P E=2.35 \mathrm{~J}(3 s) & m=\frac{P E}{g h} & 1 & m=0.2395 \ldots \\
h=1.00 \mathrm{~m}(3 \mathrm{st}) & 1 & m=0.240 \mathrm{~kg} \\
g=9.81 \mathrm{~m} / \mathrm{s}^{\circ}(356) & m=\frac{2.35}{(9.81)(1.00)} & &
\end{array}
$$

b. What is the kinetic energy of the car at the bottom of the ramp?

$$
\begin{array}{rl|l}
K E=? & & K E=\frac{1}{2} m v^{2} \\
m=0.2397 \ldots & (2 s f) & \\
v=2.5 m / s & (\partial s r) & \\
& =\frac{1}{2}(0.2397 \ldots)(2.5): & K E=0.74936 \ldots
\end{array}
$$

c. The energy of the moving car can be converted to heat due to the friction of the wheels on the ramp. The difference between the potential energy of the car and its kinetic energy at the bottom of the hill equals the energy lost due to friction. How much energy is lost due as heat for the group's car?

$$
\begin{aligned}
\text { Energy Lost } & =2.40-0.75 \\
& =1.6 \mathrm{~J}
\end{aligned}
$$

partc-scientific notation

Regular Notation (RN)- The standard way that we write our numbers.
Ex: Two Hundred and Eight Million is written - 280,000,000.
Scientific Notation (SN)- A shorthanded way of writing really large or really small numbers. In SN a number is written as the product of two factors.

Ex: $280,000,000$ can be written in scientific notation as 2.8×10^{8}.

First Factor A number that is between 1 and 10 It may or may not be a decimal.

Second Factor

Is always a power of 10 . The power of the exponent tells you how many places to move the decimal point. The sign of the exponent tells you which direction to move it.

If exp Mov Add	is Negative al to the Left here needed.	If exponen Move decim Add zeros w	
Scientific Notation	How to Change		Regular Notation
7.5×10^{5}	Exponent is positive 5. Move the decimal 5 places to the right		750,000.
3.8×10^{4}	Exponent is positive 4. Move the decimal 4 places to the right		38,000.
4.2×10^{-3}	Exponent is Negative 3. Move the decimal 3 places to the left.		. 0042
7.51×10^{-5}	Exponent is Negative 5. Move the decimal 5 places to the left.		. 0000751

PRactice

Change from Regular Notation to Scientific Notation:	Change from Scientific Notation to Regular Notation:		
1.) 45,000 $\underline{4.5 \times 10^{4}}$ 1.) 9.46×10^{-6} $\underline{\underline{00000946}}$ 2.) $9,000,000$ $\underline{7.45 \times 10^{6}}$ 2.) 2.5×10^{3} $\underline{2500}$ 3.) 7,450 3.) 1.6×10^{-2} $\underline{\underline{016}}$ 4.) .0000378 $\underline{3.78 \times 10^{-7}}$ 4.) 4×10^{5} $\underline{400,000}$ 5.) .05 $\underline{5 \times 10^{-2}}$ 5.) 7.25×10^{4} $\underline{72,500}$ 6.) 670,400 $\underline{6.704 \times 10^{5}}$ 6.) 3.2456×10^{-8} $\underline{.000000032456}$ 7.) $7,070,000,000$ $\underline{7.070 \times 10^{9}}$ 7.) 6×10^{-3} $\underline{\underline{006}}$ 8.) .00000089 $\underline{8.9 \times 10^{-7}}$ 8.) 9.7×10^{7} $\underline{97.000,000}$ 9.) 18900097 $\underline{1.8900097 \times 10^{-1}}$ 9.) 5.06×10^{-4} $\underline{\underline{000506}}$ 10.) $570,000,000$ $\underline{5.7 \times 10^{8}}$ 10.$) 8 \times 10^{2}$ $\underline{800}$			

1. 2.47×10^{-3}
0.0247
2. 4.5×10^{-5}
0.000045
3. 9.3×10^{7}
93,000,000
4. 5.5×10^{5}
550,000
5. 8.5×10^{-5}
0.000085
6. 6.3×10^{-1}
0.83
7. 2.07×10^{6}
2,070,000
8. 1.98×10^{4}
19,800
9. 7×10^{-8}
0.00000007
10. 2.4×10^{-5}
0.000024
11. 3×10^{2}
300
12. 9.2×10^{7}
92,000,000

REG	$\begin{array}{r} \text { CONVER } \\ \text { R NOTATI } \end{array}$	NUMBERI CIENTIFIC	TION
	al is moved left will be positive	If Decimal is Exponent	Right ative
1. 0.0024	2.4×10^{-3}	7. 0.0000035	3.5×10^{-6}
2. 5,604	5.604×10^{3}	8. 45,995	4.5995×10^{4}
3. 693.75	6.9375×10^{2}	9.754.256	$7.54256 \times 10^{\mathbf{2}}$
4. 0.087	8.7×10^{2}	10. 0.0088	8.8×10^{-3}
5. $8,550,000$	8.550×10^{-6}	11. 18.907	1.8×10^{1}
6. 12,000,000	1.2×10^{7}	12. 25,009	2.5009×10^{4}

