SCIENCE 10

BLOCK:

parta-eneRgy can be transfeRRed or transformed

Over time, scientists have conducted thousands of experiments to investigate the properties of energy. And the results are always the same:

The total amount of energy present before energy is transferred or transformed, is always exactly equal to the total amount of energy present afterwards.

In otherwards, energy is neither created nor destroyed.

The LAW OF CONSERVATION OF ENERGY:

Energy is neither created nor destroyed. Instead it is transformed form one form of energy to another, or transferred from one object to another

Energy + Systems

- Anything under observation is referred to as a system
- This is defined by the experimenter, and can vary
- For example, the bridge, bungee cord + person are the system in the diagram (shown right \rightarrow)
- Everything that is NOT part of the system that the experimenter defines, is considered to be the surroundings

- Energy produces Chcenge in a system. In the case of the bungee jumper, the system is moving from a greater height to a lesser height. This causes a direct change in the potenticul energy of the system (recall, $P E=m g h$, where $h=h e i g h t$)
- Energy may be \qquad to the system from the surroundings or \qquad from the system to its surroundings.
- Energy would be added to the system from the surroundings if wind pushed the person
- Energy would be released from the system to its surroundings as air resistance provides friction that slows the jumper down.

Useful \& Not Useful Energy:

While the transfer and transformation of energy often enables useful tasks to be carried out, \qquad no energy transformation is 100% efficient.
Each time that energy changes form, some of it becomes \qquad .
 energy transformations result in some amount of unusable energy.

For example, the system below is designed to transform chemical potential energy into light energy. \qquad energy is an unusable byproduct of this energy

useful energy after
$=$

Energy is
transformed.

not useful
energy after

Sometimes "non-useful" energy is described as \qquad .

Recall, the Law of Conservation of Energy. We know energy cannot be "lost".
Whether this energy actually leaves the system depends on which type of system it is...

Types of Systems:

1.

 : can exchange both energy and matter with it's surroundings
2. closed system: can exchange energy,
\qquad but
 mate with its surroundings
3. isolated energy or matter with it's surroundings

Energy Transfer vs Transformation

Closed System

A pressucc cooker will potatoes boiling raprese rs a chased epsom, because the tight y sealed lid prevents loss of meter ane clergy to the 8 diffou dirge in steam. Thermal en two can be transferee into the system form cuatuca jelween the pretend the some it a she can he tacsterrad out of the seem where title pul contact e the st wording cooler ai: and through transformation into radiant energy:

Open System
Ar Intoned pul ot potatoes boiling; vv the stol s ar open system. Tharral energy is ranslarred from the stove burner to it is $\mathbf{p o}^{2}$. ord "is contents, 35 wall as to the surntading enc er ais. As t ie water toils, terrie energy is
 sear. As the steam leaves the pot, the aport moas, hot 1 Irditer and enemy, to the sarge icings.

Isolated System
 epresents an isolates systern. in flory. Wee insula lo r presents ts e ashe ge of arg ever in or Taller between the system and its s mo wits. "
 in completely isolate a system.

When a system releases energy, the surroundings absorb it. Or, when a system absorbs energy, the surroundings must in turn release it. This process can involve either energy transfer, energy transformation or BOTH!

Energy Transformation: When energy moves between objects and the form of energy

Recall our billiard ball example: when one pool balls trikes another, mechanical kinetic energy is transferred from one ball to the other. It is also \qquad "lost"/unuseable by the sound and thermal energy which are

Visualizing Physical Quantities That

 Affect Kinetic and Potential EnergyGravitational PE is being transformed into mechanical KE and back again as teh sled travels down one hill and up another.

Note, the GPE is always compared to a reference position, in this case $\mathrm{h}=0$ at the

Gravitational potenial energy (GPE) is transtormed into mechanical khetic energy (KE) and back again in this sled run. After the sled stops on the second hill, it will silde backward down the hill as the remaining GPE Is once again transformed into mechanical KE. Analyzing: Which physical quantity / 5 not changing In this scenario for KE: for GPE?

Why doesn't the sled make it up the second hill?

as the sted moves...

- The fur ther the sled travels, the mare unuseable energy is "LOST".
- When it reaches the $2^{\text {nd }}$ hill, there is not enough energy to make it up.

The sled stops when it is almost at the top of the second hill. It does not have enough mechanical kinetlc energy to keep going.

- The sled is not moving, so it has

Mo KE.

- Height above the reference point is less than it was at the top of the highest hill, so GPE is less than it was at the beginning of the sled run.

The sled is partway up the second hill.

- The sled is decreasing in speed. KE is decreasing
- Height above the reference point is increasing. so

PRACTICE Complete the following practice problems
Use the equations for mechanical kinetic and gravitational potential energy to determine how they are affected in the following problems. Explain your answer in each case.

1. Two cars are driving at the same velocity, but one has twice the mass of the other. Is the mechanical kinetic energy of the larger car two times, three times, or four times that of the smaller car?
2. You are skateboarding to school and realize that you are late. If you double your pace, by what factor would your mechanical kinetic energy increase?

3. Two rock climbers of the same mass are climbing a cliff.
a. One stops to rest at a position that is 50 m above the ground. The other climber stops at a height of 25 m above the ground. Which one has. greater gravitational potential energy?
b. Would the climbers have more or less gravitational potential energy if they were climbing a cliff on the Moon?
less, because the farce of gravity (g) on the moon is less than on Earth.
4. A 54 kg skier, including equipment, stands at the top of a black diamond ski run. The vertical distance to the bottom of the run is 420 m . What is the gravitational potential energy of the skier relative to the bottom of the ski run?

5. A satellite has a mass of 689 kg and travels at a speed of $27000 \mathrm{~km} / \mathrm{h}(7500 \mathrm{~m} / \mathrm{s})$. How much

$$
\begin{aligned}
& \text { mechanical kinetic energy does the satellite have? } \\
& \begin{aligned}
K E=\frac{1}{2} \mathrm{mv}^{2} & =(0.5)(689 \mathrm{~kg})(7500 \mathrm{~m} / \mathrm{s})^{2} \\
& =(0.5)(689)(56250000) \\
& =1.94 \times 10^{10} \mathrm{~J}
\end{aligned}
\end{aligned}
$$

6. A bowling ball is rolling down the lane at $2.8 \mathrm{~m} / \mathrm{s}$. If it has a mechanical kinetic energy of 25.5 J , what is it's mass?

$$
\begin{aligned}
K E & =1 / 2 m V^{2} \\
\therefore m & =\frac{2 \cdot K E}{V^{2}}
\end{aligned}
$$

$$
m=\frac{(2)(25.5 \mathrm{~J})}{(2.8 \mathrm{~m} / \mathrm{s})^{2}}=\frac{(51)}{(7.84)}=6.51 \mathrm{~kg}
$$

7. A person who has a mass of 65 kg goes on the Sky Tower ride at an amusement park. The ride is simply a free fall from the top of a tower into a net below. If the person reaches a final velocity of $24.6 \mathrm{~m} / \mathrm{s} j u s t$ before hitting the net, from what height did the rider drop? (Ignore friction with the air)

$$
\begin{aligned}
\begin{array}{rl}
\text { energy is } \\
\text { conserved } \\
\text { (mass cancels) } \\
m=m & m g h \\
\div g \text { to cancel } & =\frac{1}{2} m \\
\div \frac{g h}{g} & =\frac{1}{2} v^{2} \\
9
\end{array}
\end{aligned} \therefore \frac{10.5)(24.6 \mathrm{~m} / \mathrm{s})^{2}}{(9.81 \mathrm{~m} / \mathrm{s})}
$$

part b-tRansformation of kinetic \& potential eneRgy

Law Conservation of EnergyRemember the law of conservation of energy from chemistry? Energy can not be
created or destroyed

$$
K E_{i}=K E_{f}
$$ Energy can, however, be converted from one type to another, and can be transferred from one object to another stay the same type al energy.

Example: Energy Transformation in a Pendulum
A pendulum is a mass on the end of a string
which is re to swing in 2 dimensions
\qquad which is free to swing in $\quad 2$ dimensions has potential energy (equal to its mass and height remember)
 As it falls, the PE of the mass is \qquad transformed into kinetic e energy as st he pendulum gains velocity due to the a (celeration in gravity $\left(a=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$ As it swings upwards again, the $K E$ of the mass is transformed back into $P E$ as the mass slows down and gains height back to the top of the swing

$$
X E=\frac{1}{2} m v^{2}
$$

Top

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{MAX} \\
& \text { velocity }=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{KE}=O J
\end{aligned}
$$

Top.

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{MAx} \\
& \text { velocity }=\frac{0 m / S}{O J} \\
& \mathrm{KE}=\mathrm{OJ}
\end{aligned}
$$

$$
\cdots-n=0
$$

 worksheet in the space provided below

Part 1- The movement of a 535 kg rollercoaster car has been graphed below. Use the graph to answer the questions below. We will ignore the very real effects of friction and air resistance. Don't forget to show your work in the space provided.

1. What is the potential energy of the rollercoaster car at time 4 s ?

$$
\begin{array}{ll}
m=535 \mathrm{~kg} & (3 \mathrm{sc}) \\
h=90.0 \mathrm{~m} & (3 \mathrm{st}) \\
g=9.81 \mathrm{~m} / \mathrm{s}^{2} & (3 \mathrm{st}) \\
P E=?
\end{array}
$$

2. What is the velocity of the rollercoaster car when it reaches the bottom of the track at time 7 s ?

- NOPE (all PE has been converted to KE)

$$
\begin{array}{ll|l}
\begin{array}{ll}
K E=524300 \mathrm{~J} & (3 s v) \\
m=535 \mathrm{~kg} & (3 s t) \\
v=? & v=\sqrt{\frac{K E}{\frac{1}{2} m}} \\
& v=\sqrt{\frac{524300}{\frac{1}{2}(535)}} \\
P E=m g h & v=44.27 \ldots \\
& =(535)(9.81)(100) \\
& =524300 \mathrm{~J}
\end{array} & v=44.3 \mathrm{~m} / \mathrm{s} \\
&
\end{array}
$$

3. What is the kinetic energy of the rollercoaster car at time 8 s if it has a velocity of $13.0 \mathrm{~m} / \mathrm{s}$?

$$
\begin{array}{l|r}
K E=? \\
m=535 \mathrm{~kg} & (38 r) \\
v=13.0 \mathrm{~m} / \mathrm{s} & \text { (3st) }
\end{array} \quad \begin{aligned}
\angle E & =\frac{1}{2} m v^{2} \\
& =\frac{1}{\partial}(535)(13.0)^{2} \\
& =45207.5 \\
& =45200 \mathrm{~J} \\
& \\
& \\
&
\end{aligned}
$$

4. How high is the rollercoaster car from question \#3 able to coast up the hill between 8 to 10 s?

$$
\begin{aligned}
& P E=45207.5 \mathrm{~J} \quad(386) \\
& m=535 \mathrm{~kg} \quad(3 \mathrm{s6}) \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{\circ} \\
& (3 \mathrm{sf}) \\
& h=?
\end{aligned}
$$

$$
\begin{aligned}
h & =\frac{P E}{m g} \\
& =\frac{45807.5}{(535)(9.81)} \\
& =8.613 \ldots \\
h & =8.61 \mathrm{~m}
\end{aligned}
$$

Part 2 -Word problems. . Don't forget to show your work in the space provided.
5. A 72 kg pole-vaulter running at $8.4 \mathrm{~m} / \mathrm{s}$ completes a vault. If all of her kinetic energy is transformed into potential energy, what is the maximum height of her vault?

> (1) find KE:

6. A truck parked at the top of a 42.0 m hill has $2.69 \times 10^{5} \mathrm{~J}$ of potential energy. How fast will the truck be moving when it reaches the bottom of the hill?
(1) Find mass (from PE):

$$
\begin{array}{l|l}
h=42.0 \mathrm{~m}(35 \mathrm{~s}) & m=\frac{P E}{9 h} \\
P E=2.69 \times 10^{5} \mathrm{~T}(3 \mathrm{st}) & =\frac{2.69 \times 10^{5}}{m=?} \\
g=9.81 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{st}) & (9.81)(42.0) \\
& =652.88 \ldots \\
& =653 \mathrm{~kg}
\end{array}
$$

(2) Find u (from KE):

$$
\begin{aligned}
& \begin{array}{l}
\text { (J) Find } v(\text { from KE): } \\
m=652.88 \ldots \mathrm{~kg}(3 \mathrm{si}) \\
V=\text { ? } \\
K E=P E=2.69 \times 10^{5} \mathrm{~J}(3 \mathrm{sk})
\end{array} \quad \begin{aligned}
& \frac{K E}{\frac{1}{2} m} \\
&=\sqrt{\frac{2.69 \times 10^{5}}{\frac{1}{2}(652.88 . .)}} \\
&=28.70 \ldots \\
&=28.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

7. Schwab fires a handgun straight upwards into the air (very foolishly). If the bullet leaves the muzzle of the gun with a velocity of $240 \mathrm{~m} / \mathrm{s}$ and a kinetic energy of 284 J , how high will the bullet travel?
(1) Find mass (from LE):

$$
\begin{array}{rl|l}
V=240 \mathrm{~m} / \mathrm{s} & (251) \\
K E=284 \mathrm{~J} & (356) & m=\frac{\mathrm{KE}}{\frac{1}{\gamma} v^{\prime}} \\
m=? & & \frac{284}{\frac{1}{\gamma}(240)^{\circ}} \\
& =0.00986 \ldots \\
& =0.0099 \mathrm{~kg}
\end{array}
$$

(3) Find h (from $P E$):

$$
\begin{array}{l|l}
m=0.00986 . \mathrm{kg}(25 f \mathrm{H} & h=\frac{P E}{m g} \\
P E=284 \mathrm{~J}(356) \\
g=9.81 \mathrm{~m} / \mathrm{s}(3 \mathrm{sk}) & =\underbrace{}_{(0.094} \\
h=? & \\
& =2936.11 . \\
& =2900 \mathrm{~m}
\end{array}
$$

8. A boulder with a mass of 682 kg is resting on the edge of a 85 m cliff. If it falls off the cliff and lands on top of the coyote, what is its velocity as it strikes the ground?

$$
\begin{aligned}
& \text { (1) Find PE: } \quad P E=\text { Meh } \\
& m=682 \mathrm{~kg} \text { (dst) } \\
& h=85 \mathrm{~m}(2 \mathrm{sk}) \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{\circ}(3 \mathrm{st}) \\
& P E=\text { ? } \\
& =(682)(9.81)(85) \\
& =568685.7 \\
& =570000 \mathrm{~J} \\
& \text { (ว) Find } v \text { (from KE): } \\
& m=682 \mathrm{~kg} \text { (3s6) } \\
& K E=568685.7 \mathrm{~J} \text { (iss) } \\
& v=\text { ? }
\end{aligned}
$$

partc-energy is transformed in chemical Reactions

The amount of energy transformed in a chemical reaction is determined by the chemical
\qquad in the reactants and products.
Different compounds, store different amounts of energy, so when reactant bonds are broken (requires energy), then product bonds are formed (released energy) the amount of energy depends on what the compound is.

Remember:

- If the reactants are HIGHER in chemical potential energy than the products, energy is \qquad by the system during the reaction.

The reaction is EXOTHERMIC.

- If the reactants are LOWER in chemical potential energy than the products, energy is \qquad from the surroundings during the reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { energy }
$$

The reaction is ENDOTHERMIC.
Example: When methane reacts with oxygen gas to product carbon dioxide and water, is energy released or absorbed? How can you tell?

- energa is relecised
- products are lower energl than the reactants.

Example 1: Cellular Respiration - transforming chem ical PE to carry out life's reactions

Example 2: Photosynthesis - transforming Radiant KE to ATP in plants

Light energy used during the chemical reaction of CO 2 and $\mathrm{H}_{2} \mathrm{O}$, to produce glucOSe and oxygen gas.
During photosynthesis, \qquad radiant KB (light energy from the sun) is transformed into chemical potential energystored in the bonds of glucose molecules.
Photosynthesis requires (orgnaelles) chlorophyll containing structures called chloroplasts, so it occurs mainly in plants but also some algae and microscopic organisms.

If you thought the Cellular Respiration \& Photosynthesis reactions looked similar, you're right!

- Energy flows into an ecosystem as sunlight and leaves as heat.
- Photosynthesis generates O_{2} and glucose which are used in cellular respiration.
- cells in living things use the chemical PE stored in glucose to regenerate ATP, which fuels cellular work

Example 3: Fossil Fuel Combustion - solar energy is transformed into chemical PE

Solar energy is transformed into chemical potential energy by photosynthesis. polenta energy by photosynnhess.

Fossil fuels contain large amounts of \qquad chemical PE that was transformed form solar energy by ancient plants.

Millions of years and high pressure in the earth produces deposits of $\mathrm{COOQ}, \mathrm{Oil}$ and natural gas.

We extract these energy resources through combustion and processing, which produces a large amount of $\mathrm{CO}_{\alpha^{(g)}}$

This gas plays a major role in atmospheric warming and contributes to natural and human-induced

$$
\begin{aligned}
& 2 \mathrm{C}_{3} \mathrm{H}_{\mathrm{I}}(\ell)+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow{ }^{16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { energy }} \\
& \left(\begin{array}{l}
\text { (octane) }
\end{array}\right.
\end{aligned}
$$

Their chemical potetertal energy is transformed. Carbon dioxide is released.
produced in large amounts
*also contain contaminants like sulphur + nitrogen which Apollution.

Example 4: Fuel Cells - other forms of energy with fewer pollutants

An electrolyte membrane lets only hydrogen ions pass to the cathode (+). Electrons from the gas stay on the anode(-). Hydrogen ions that reach the cathode react with electrons and oxygen to form water. The electrons are drawn from the anode, through an external circuit, to the cathode.

Assignment \#3: Complete the following questions in the space provided below

1. What factor determines the amount of energy transformed in a chemical reaction? ©

The types of chemical bonds, and the type of compound
2. Indicate whether the following statements are true or false. Correct any statements that are false.
a) More chemical potential energy is stored in the bonds of some compounds than in others.
of The materials involved in a chemical reaction can be thought of as a system. Energy released in a chemical reaction ${ }^{2} 5$ always thermal energy. (or severcle other types
d) If the reactants are higher in chemical potential energy than the products, energy is absorbed tom-the surroundings during the reaction. (exothermic)
e) If the reactants are lower in chemical potential energy than the products, the reaction is endothermic.

3. The amount of energy released in cellular respiration is similar to the amount released when methane reacts with oxygen. Why does your body not burn?

1. It's NOT a combustion reaction
2. It is "cellular energy" (ATP) a very specific type only used by the cells of living things.
3. The energy produced is often immediately used by our body in various functions
4. Compare energy transformation in fossil fuel combustion and fuel cells. 险
a) How are these processes similar?
b) How do they differ?
a) Both produce large amounts of energy. Water is a product of both reactions. Both used to provide electrical KE.
b) F.F Combustion (radiant KE-->chemical PE) produces large amounts of CO_{2} gas and pollutants. Fuel cells are a more "clean" energy source (chemical PE-->electrical KE), ionization of Hydrogen creates the flow of electrons
5. Describe how the processes of cellular respiration and photosynthesis are connected. 塥 징
The products of photosynthesis are the reactants of cellular respiration. The 2 reactions need each other, it is a cycle.

part d-impacts of energy transformation

How Do We Use Energy Transformation?

1. Powering Machines

\square As we have seen, combustion engines transform the Chemical PE energy in fuel into KE to turn wheels, spin propellers, and so on
\square these engines power cars, trucks, trains, lawnmowers and other machines that transport materials and perform difficult manual labour

2. Generating Electricity

\square Most electricity is made by turning electrical devices called \qquad generator (basically an electric motor), converting KE into electrical energy
\square Nuclear power plants use radioactive decay to convert nuclear energy into neat energy, the expansion of the steam creates $K E$ which turns generators \Rightarrow electricity

- Coal and natural gas power plants use chemical reactions to convert chemical PE . energy into heat energy, the expansion of the steam creates KE which turns generators \Rightarrow electricity
- Hydroelectric dams store huge amounts of $P E$ by keeping reservoirs of water behind the dam, when the water is allowed to flow out it is converted into $K E$ which is used to turn generators \Rightarrow electricity \square Wind turbines use the $K E$ of moving air to turn generators \Rightarrow electricity.

Environmental Effects of Energy Transformation

1. Pollution

\rightarrow coal, natural gas, il

- Collecting fuels from the environment and running machines releases dangerous substances into the environment that harm organisms, such as heavy
modals, CO_{2}, carcinogens
- Machines and electricity also pollute the environment with excess light, sound, heat

2. Destruction

\square Like humans, organisms require a place where they can survive
\square Fossil fuels (natural gas, oil, coal) and other sources of energy are found in the environment, and harvesting them usually damages or destroys the habitat in the area
\square As suitable habitats are removed, the species that live there become endangered and eventually go extinct.
3. Carbon Dioxide Production

As we know, the products of combustion reactions are \qquad water + carbon dioxideHuman use of combustion to power machines and generate electricity has resulted in huge amount of CO_{2} released into the atmosphere.Data show this is as much as \qquad tons of CO_{2} since $1751,0 \longdiv { 1 . 4 \times 1 0 ^ { 1 5 } \mathrm { kg } \mathrm { CO } _ { 2 } }$Some of this CO_{2} is absorbed by \qquad in oceans, rivers, and lakes, forming carbonic acid, this acidification harms aquatic organisms
\square Some CO_{2} remains in the atmosphere, trapping the Sun's heat and contributing to the natural greenhouse effect , this has resulted in a global temperature
increase of about $\sim 1.5^{\circ} \mathrm{C}$

Where Do We Go From Here?

\square Steady progress is being made by people around the world to reduce the environmental effects of energy use, your generation needs to continue to improve
\square Our dependence on combustion as a source of energy is creating a global environmental crisis: we need to develop and use other sources of energy (solar, wind, nuclear, geothermal, tidal, etc)

Unit Review Package

Vocabulary: Referring to your notes, define each of the following vocabulary terms in a complete sentence:

Knowledge:

Identify the following as either potential energy or kinetic energy.

Scenario	Type of Energy
11. A bicyclist coasting down a hill reaches the bottom of the hill.	Potential Energy
12. An amusement park ride stops at the top.	Potential Energy
13. A bowling ball rolling down the alley.	Kinetic Energy
14. An archer with his bow drawn.	Potential Energy
15. Sitting in the top of a tree.	Potential Energy
16. A bowling ball sitting on the rack.	Potential Energy

17. What is the formula for kinetic energy? What do the symbols in the formula mean? What are the units for measuring kinetic energy?

18. What is the formula for potential energy? What do the symbols in the formula mean? What are the units for measuring potential energy?

19. Missy Diwater, the former platform diver for the Ringling Brother's Circus had a kinetic energy of $15,400 \mathrm{~J}$ just prior to hitting the bucket of water. If Missy's mass is 58 kg , then what is her velocity before hitting the water?

$$
\begin{aligned}
& K E=15400 \mathrm{~J} \text { (dst) } \\
& m=58 \mathrm{~kg} \text { (nsf) } \\
& V=\text { ? } \\
& v=\sqrt{\frac{K_{E}}{\frac{1}{2} m}} \\
& =\sqrt{\frac{15400}{\frac{1}{2}(58)}} \\
& =\sqrt{531.034 \ldots} \\
& v=23.044 \ldots \\
& v=\partial 3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

a) The ground

$$
\begin{aligned}
m=0.870 \mathrm{~kg}(3 s \%) & P E & =m g h \\
h=12.0 \mathrm{~m}(3 s \%) & & =(0.870)(9.81)(12.0) \\
g=9.81 \mathrm{~m} / \mathrm{s}^{2}(351) & & =102.4164 \\
P E=? & & =102 \mathrm{~J}
\end{aligned}
$$

b) Sea level

$$
\begin{aligned}
& m=0.870 \mathrm{~kg}(356) \\
& h=12.0+50.0=62.0 \mathrm{~m}(35 \mathrm{~s}) \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sk}) \\
& P E=?
\end{aligned}
$$ the edge of a cliff whose height is 50.0 m above the sea. Calculate the potential energy of the coconut relative to:

$$
\begin{aligned}
P E & =m g h \\
& =(0.870)(9.81)(62.0) \\
& =529.1514 \\
& =529 \mathrm{~J}
\end{aligned}
$$

22. The potential energy of a 48 kg cannon ball on the Moon is 14500 J . How high was the cannon ball above the Moon's surface to have this much potential energy?

$$
\begin{aligned}
& m=48 \mathrm{~kg}(258) \\
& P E=14500 \mathrm{~J}(258) \\
& g=1.62 \mathrm{~m} / \mathrm{s}^{2}(386) \\
& h=?
\end{aligned}
$$

$$
\begin{aligned}
h & =\frac{P E}{m g} \\
& =\frac{14500}{(48)(1.62)} \\
& =186.4711 \ldots \\
& =190 \mathrm{~m}
\end{aligned}
$$

23. The kinetic energy of a golf ball is measured to be 143.3 J . If the golf ball has a mass of about 0.047 kg , what is its velocity?

$$
\begin{aligned}
& K E=143.3 \mathrm{~J} \quad(458) \\
& m=0.047 \mathrm{~kg}(258) \\
& v=?
\end{aligned}
$$

$$
\begin{aligned}
v & =\sqrt{\frac{K E}{\frac{1}{2} m}} \\
& =\sqrt{\frac{143.3}{\frac{1}{2}(0.047)}} \\
& =\sqrt{6097.87 \ldots}
\end{aligned}
$$

24. The greatest velocity that a meteoroid can have and still be pulled down to Earth's surface is $7.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$. If a meteoroid traveling with this velocity has a kinetic energy of $2.56 \times 10^{13} \mathrm{~J}$, what is its mass?

$$
\begin{aligned}
& v=7.0 \times 10^{4} \mathrm{~m} / \mathrm{s} \quad(256) \\
& K E=2.56 \times 10^{13} \mathrm{~J} \quad(358) \\
& m=?
\end{aligned}
$$

$$
\begin{aligned}
m & =\frac{K E}{\frac{1}{2} r^{2}} \\
& =\frac{2.56 \times 10^{13}}{\frac{1}{2}\left(7.0 \times 10^{4}\right)^{2}}
\end{aligned}
$$

25. A piano with a mass of 272 kg is teetering on the edge of a 30.6 m balcony. If it falls off the balcony, what is its velocity as it hits the ground?

$$
\begin{aligned}
& \text { (1) Find PE: } \\
& m=272 \mathrm{~kg}(3 \mathrm{sf}) \\
& h=30.6 \mathrm{~m}(3 \mathrm{st}) \\
& \\
& m=9.81 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sf}) \\
& \\
& g=(272)(9.81)(30.6) \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

(D) Find v :

$$
K E=81650.59 \mathrm{~g}
$$

$$
m=\partial 7 \partial \mathrm{~kg}(3 s f)
$$

$$
v=?
$$

26. Explain the three environmental effects of human energy transformation.

Human energy transformation results in three main environmental effects:

1. Pollution - collecting and using sources of energy causes the release of chemicals, light, sound, heat and other agents which negatively affect living organisms
2. Habitat Destruction - collecting and using sources of energy causes the destruction of habitat which organisms need to survive
3. Carbon Dioxide Production - the combustion of fossil fuels releases CO2 into the atmosphere; some of this is absorbed into the oceans and causes them to become more 4 acidic, some remains within the atmosphere where it enhances the natural greenhouse effect and contributes to climate change
4. A softball is thrown straight upwards into the air at $24.5 \mathrm{~m} / \mathrm{s}$, with a kinetic energy of 60.5 J . How high will the ball fly?
(1) Find m :

$$
\begin{aligned}
& V=24.5 \mathrm{~m} / \mathrm{s}(3 \mathrm{sk}) \\
& K E=60.5 \mathrm{~J} \quad(3 \mathrm{sk}) \\
& m=?
\end{aligned}
$$

