
science 0

unit I: chemistry

book 4: chemical equations & balancing

name:

block:

Part A: Intro to Chemical Reactions

0.	I at	
Memis matter.	is the science concerned with the properties, composition, and behaviour of marker is anything that has mass and occupies space	
Mass is the am	ount of matter contained in a thing. Usually the mass of common things is measured in	
Properties a	are the qualities of a thing, especially those qualities common to a group of things. The er and its properties is a very important aspect of chemistry.	
Aphysical	property of a substance is a property that can be found without creating a new	
For example:	ustre, state al matter (s,1,g), and uctivity, ardness, ductile, colour, malleable, shape, density.	
A Chemical	property is the ability of a substance to undergo chemical change/ reaction	
For example:	Musubstance. Planmability, corrosion, toxicity, etc.	
	The properties of matter are also classified as being either physical properties or chemical	
Physical Properties	properties. Recall, Physical properties describe Thus ico changes	
versus Chemical Properties	which are changes ofor form. Physical properties also describe the physical characteristic of a material.	
	* generally irreversible Chemical properties describe chemical changes are those in	
100	Chemical properties describe chemical Chemical changes are those in	in
1	which a new substance(s) or species is formed (Figure 2.1.2). Chemical properties also describe the tendency of a chemical to	1
	Chemical properties describe relationships or interactions between different forms of matter.	
Figure 2.1.2 The wood that is burning to heat the pot is	They include a chemical's - stability) - gas for med (bubble	5
undergoing chemical changes.	- reactivity - oder produced.	
The boiling soup in the pot is undergoing a physical change.	- toxicity) -light/sound energy p	ro
undergoing a physical change.	change in heaft	4
Most physical properties des	scribe relationships or interactions between matter and energy.	م
-Hardness (Moh'S	hardness scale) quality of resisting abraision (soild from Liquin	¢.
-Malleability W. Cabi	life to be stretched into a fine wire . colour	n
-Lustre Wice St	complying reflects light (shiney or dull)	
-Viscosity thick	ant from an area of a concentration to	
-Diffusion www.	area of I concentration (liquids + gas)	
For example, A material can be classified a	s opaque transparent or translucent by how it	
	ysical properties you may have learned about include	
density, duC	and surface tension. I	
	Physical properties describe physical changes.	
Chemical properti	ies describe interactions between different forms of matteror chemical change. 2	

	VI	1	
Name	-		
Name	10		

PHYSICAL AND CHEMICAL PROPERTIES AND CHANGES

Part A: Physical or Chemical?

Identify the following as a chemical (C) or physical property (P):

P	1. blue color
P	2. density
C	3. flammability (burns)
P	4. solubility (dissolves)
C	5. reacts with acid
C	_6. supports combustion
P	_7. sour taste
P	8. melting point
C	9. reacts with water
P	_10. hardness
P	_11. boiling point
P	12. luster Shine
P	_13. odor
C	14 reacts with air

Identify the following as chemical (C) or physical (P) changes.

1. NaCl (Table Salt) dissolves in water.
2. Ag (Silver) tarnishes.
3. An apple is cut.
4. Heat changes H ₂ O to steam.
5. Baking soda reacts to vineger.
6. Fe (Iron) rusts.
7. Alcohol evaporates .
8. Ice melts.
10. Sugar dissolves in water.
11. Wood rots.
12. Pancakes cook.
13. Grass grows.
14. A tire is inflated.
15. Food is digested.
17. An ice cube is placed in the sun.
18. Two chemicals are mixed together and a gas is produced.
19. A bicycle changes colour as it rusts.
20. A solid is crushed into a powder.
21. Two substances are mixed and light is produced.
22. A piece of ice melts and reacts with sodium.
23. Mixing salt and pepper.
24. Chocolate syrup is dissolved in milk.
25. A marshmallow is toasted over a campfire.
26 A marshmallow is cut in half

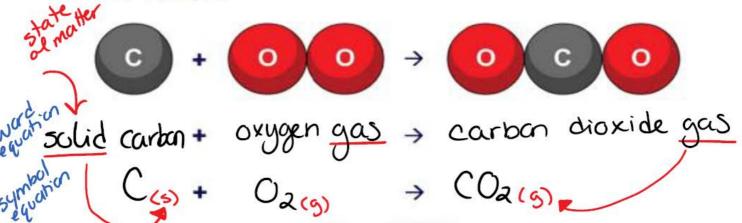
Part B

Read each scenario. Decide whether a physical or chemical change has occurred and give evidence for your decision. The first one has been done for you to use as an example.

	Scenario	Physical or Chemical Change?	Evidence
1.	Umm! A student removes a loaf of bread hot from the oven. The student cuts a slice off the loaf and spreads butter on it.	Physical	No change in substances. No unexpected color change, temperature change or gas given off.
2.	Your friend decides to toast a piece of bread, but leaves it in the toaster too long. The bread is black and the kitchen if full of smoke.	Chemical	Hew substance produced Geolour change, smell
3.	You forgot to dry the bread knife when you washed it and reddish brown spots appeared on it.	Chemical	New substance produced (1484)
4.	You blow dry your wet hair.	Physical	No new substance Produced
5.	In baking biscuits and other quick breads, the baking powder reacts to release carbon dioxide bubbles. The carbon dioxide bubbles cause the dough to rise.	Chemical	Reaction takes place
6.	You take out your best silver spoons and notice that they are very dull and have some black spots.	Chemical	New substance produced
7.	A straight piece of wire is coiled to form a spring.	Physical	JUST changed the shape.
8.	Food color is dropped into water to give it color.	Physical	Chemical make-up of Hio and Good colouring not changed.
9.	Chewing food to break it down into smaller particles represents a change, but the changing of starch into sugars by enzymes in the digestive system represents a change.	O Physical Ochemical	Tust breaking food down Chemical reaction
10.	In a fireworks show, the fireworks explode giving off heat and light.	Chemical	Reaction takes place

Part C: True (T) or False (F)?

1,	F	Changing the size and shapes of pieces of wood would be a chemical change.	
2.	F	In a physical change, the makeup of matter is changed.	
3.	T	Evaporation occurs when liquid water changes into a gas.	
4.	T	Evaporation is a physical change.	
5.	F	Burning wood is a physical change.	
6.	F	Combining hydrogen and oxygen to make water is a physical change.	
7.	T	Breaking up concrete is a physical change.	
8.	F	Sand being washed out to sea from the beach is a chemical change.	
9.	F	When ice cream melts, a chemical change occurs.	
10.	F	Acid rain damaging a marble statue is a physical change.	


chemical properties = chemical change

What is a chemical reaction?

A <u>Chemical reading</u> is a change that takes place when one or more substances (called <u>Reactants</u>) form one or more <u>Newsubstances</u> (called <u>Products</u>).

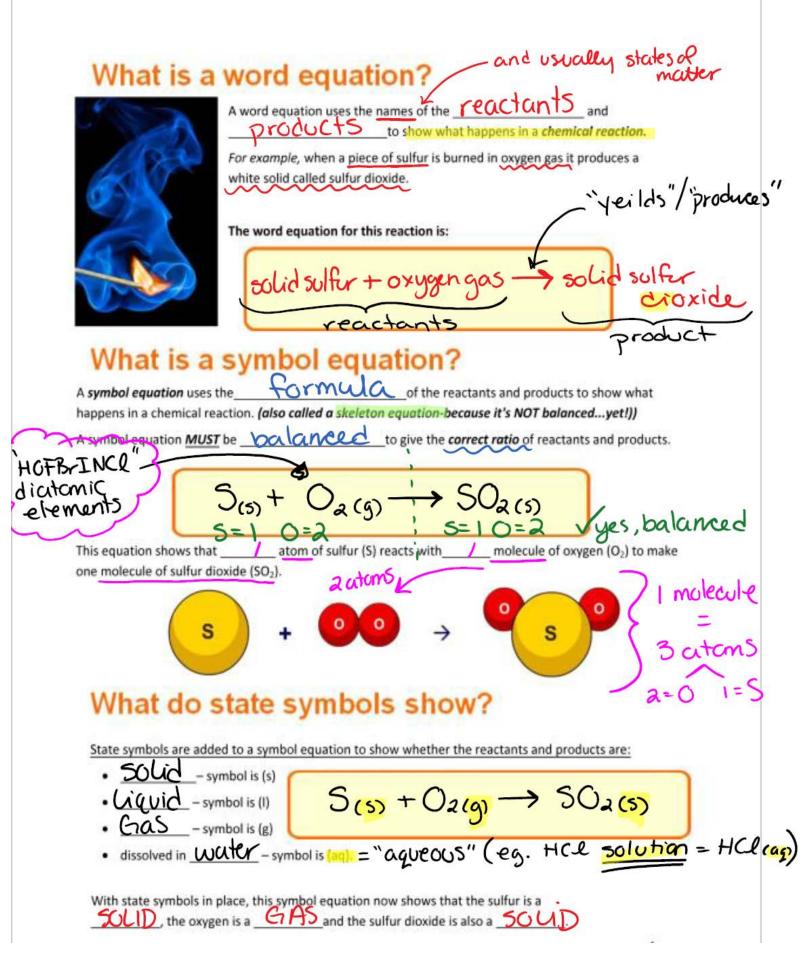
For example:

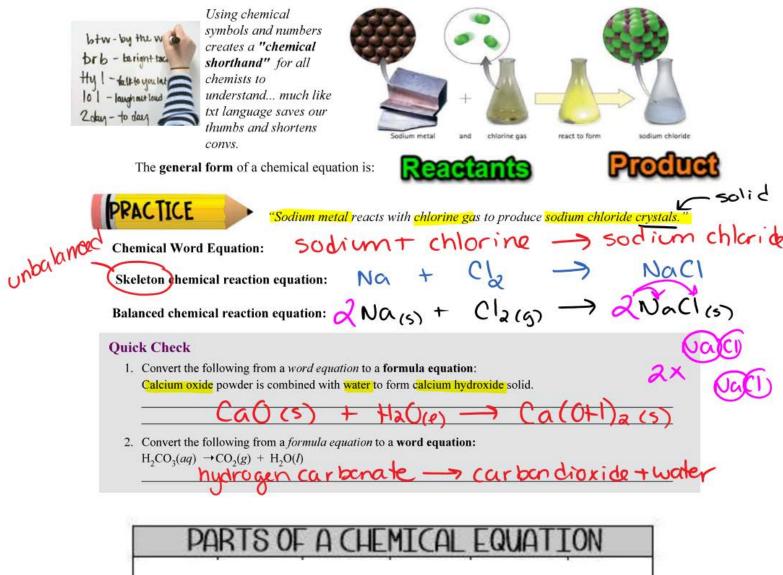
How can you spot a chemical reaction?

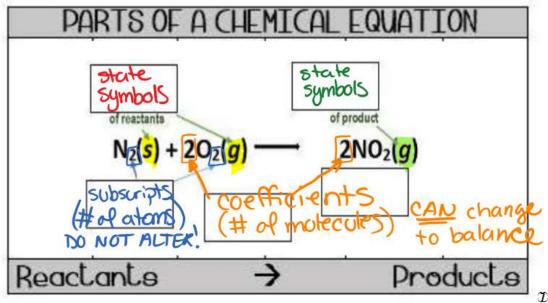
Chemical reactions can appear very different.

As you observe a chemical reaction, you may detect:

- a <u>COlOW</u> change
- · precipitate (solid) forming
- Energy being produced (heat, light)
- Cras produced (fizzing, bubbles)
- an odor being produced. (smell)




when a solid


Liquids

Chemical Reaction Equations

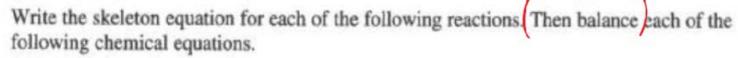
Chemical word equations are descriptive but chemical reaction equations are much more efficient.

Writing Word Equations - Answers

Task 1

Reactants - magnesium, hydrochloric acid

Products - magnesium chloride, hydrogen

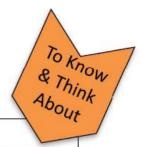

Task 2

Aluminium	+	Sulfuric	-	Aluminium	+	Hydrogen
		Acid		Sulfate		

Task 3

a.	Iron		+	Nitric		-	Iron			+ +	łydro	ogen
				Acid			Nitra	te				
b.	Zinc		+	Iron		→	Zinc			+ 1	ron	
				Chloride	e		Chlor	ide				
c.	Potassium		+	Water		•	Potas	siun	n	+ 1	tydro	ogen
							Hydre	oxide	9		-74	
d.	Copper		+	Sodium	i)	→	Sodiu	ım		+ (орр	er
	Carbonate						Carbo	onate	9			
e.	Calcium	+	Sul	furic	+	Cal	cium	+	Car	rbon	+	Water
	Carbonate		Aci	d		Sul	fate		Dic	oxide		

Word equations


- 1. hydrogen + oxygen \rightarrow water $2+1 + 0 \rightarrow 2+1 \rightarrow 0$
- 2. iron(III) oxide + hydrogen water + iron
 Fe a 0 1 + H2 H20 + 2Fe
- 3. sodium + water → sodium hydroxide + hydrogen

 2Na + 2H2O → 2NaOH + H2
- 4. calcium carbide + oxygen \rightarrow calcium + carbon dioxide $C\alpha C_2 + 2O_2 \rightarrow C\alpha + 2CO_2$
- 5. potassium iodide + chlorine \rightarrow potassium chloride + iodine $2KI + Cl_2 \rightarrow 2KCl + I_2$
- 6. chromium + tin(IV) chloride → chromium(III) chloride + tin LCr + 35nCly → 4CrCl₃ +35n
- 7. magnesium + copper(II) sulphate → magnesium sulphate + copper

 Mg + CuSO₄ → MgSO₄ + Cu
- 8. zinc sulphate + strontium chloride → zinc chloride + strontium sulphate

 Zn 504 + Sr Cl2 → Zn Cl2 + Sr SO4
- 9. ammonium chloride + lead(III) nitrate \rightarrow ammonium nitrate + lead(III) chloride $3NH_4CL + Pb(NO_3)_3 \rightarrow 3NH_4NO_3 + PbCl_3$
- 10. iron(III) nitrate + magnesium sulphide \rightarrow iron(III) sulphide + magnesium nitrate $2 Fe(NO_3)_3 + 3MGS \rightarrow FeS_3 + 3MG(NO_3)$
- 11. aluminum chloride + sodium carbonate aluminum carbonate + sodium chloride
- $2A1C13 + 3Na_2CO_3 \rightarrow A1_2CO_3 + 6Na_C1$
- 12. sodium phosphate + calcium hydroxide \rightarrow sodium hydroxide + calcium phosphate $Na_3 PO_4 + Ca(OH)_2 \rightarrow NaOH + Ca_3(PO_4)_2$

Balancing Chemical Equations: An Inquiry Lesson Part 1: The Law of Conservation of Mass

TO READ:

The Law of Conservation of Mass: Matter is neither created or destroyed in an ordinary chemical reaction or physical change.

The Law of Conservation of Mass (in other words): The mass of the reactants must equal the mass of the products.

<u>Think About It & Answer</u>: (Record your answer on your Student Answer Sheet.)

1. How do the above statements relate to a balanced chemical equation?

Law of Conservation of Mass: Prove It!

Materials:

125 mL Erlenmyer Flask + Cork Stopper water electronic balance small piece of Alka-Seltzer (about ¼ of a tablet)

Procedure:

- 1. Collect all needed materials, including goggles.
- 2. Fill the flask about ¾ full with water. Put the cork on the Flask. Find the mass of both the bottle and the cap, and record the mass in the data table.
- 3. Using weighing paper, find the mass of a small piece of Alka-Seltzer. (Either tare the balance or subtract out the mass of the paper.) Record mass in data table.
- 4. Add both masses to come up with the total mass of the system before reaction.
- Remove the cap from the bottle and drop in the Alka-Seltzer. Replace cap quickly. After the reaction stops, find the mass of the total system and record in the data table.
- 6. Slowly remove the cap, and leave open for 20 seconds. Replace the cap and find the final mass and record in data table.

Data: Record data on the data table included on your Student Answer Sheet.

Analysis/Questions: See your Student Answer Sheet.

Conclusion: See your Student Answer Sheet.

Part 2: The Balanced Chemical Equation

Materials:

Set of Balancing Chemical Equations cards White board & markers (or other directions from your teacher)


Directions:

Follow the directions, and when you see a question box, return to your Student Answer Sheet to answer that question.

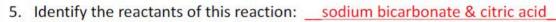
1. Lay out your cards, and find the card that you think represents methane (CH₄).

- 2. The reactants for the first reaction are CH₄ and O₂. Find a diatomic molecule that represents oxygen and a plus sign. Lay out the reactants.
- 3. Place a yield sign after the oxygen. The products for this reaction are water and carbon dioxide. Find the models that represent these two molecules and place them on the product side with another plus sign.
- 4. Count the number of each type of atom. If there are not the same number of atoms on each side of the equation, add molecules until you get the equation balanced.
- 5. Once you have the equation balanced (with the same number of atoms for each element on both sides of the equation), choose coefficients (the numbers) that go in front of each compound and represent the number of molecules needed.

Notice!

- ✓ In order to balance a chemical equation, you can only change coefficients (the number of compounds you need), NOT subscripts. Changing subscripts would change the compound.
- ✓ Polyatomic ions can be balanced together as one unit IF they stay together on both sides of the equation!

	e: Perio
Part 1: The Law of Conservation of Mass	
Think About It Question:	
A balanced equation must have the same num	
the equation. If the same number of atoms are of	•
the equation. If the same number of atoms are t	ar both sides, then the mass will be the same.
Data: Law of Conservation of	of Mass Data
	Mass (g)
Bottle, cap, H ₂ O	fill about ¾ full (water bottle)
Alka-Seltzer	¼ of a tablet (≈ 0.75 g)
Mass of total system before reaction	total mass of the two above
Mass of total system after reaction	should be the same as above
Final Mass (after 20 seconds)	should be a little less
Analysis/Questions:	
1. What evidence did you observe that indicates that	: a chemical reaction took place?
frizzing, bubbles, indicates the production of a g	
Compare the mass of the closed system before the system after the reaction. Describe your results less.	
If your data shows a difference between the initial the reaction, (before the cap is opened) how do yo	
Maybe didn't get the cap on quick enough befo	re some of the gas escaped.
3. How do you account for the difference in mass aft	er the top was opened for 20 seconds?
The mass is less due to "escaping" gas after t	he top was opened.
4. This experiment was conducted in a "closed" systematical systematical experiment was conducted in a "closed" systematical experiment.	em. If it had been conducted in an "open"
system, how would your data have been different	?
The mass of the total system after reaction w	ould have been much less than the initial


mass due to "escaping" gas.

Analysis/Questions:

The chemical equation for this reaction is as follows:

$$3 \text{ NaHCO}_3 + C_6 H_8 O_7 \rightarrow \text{Na}_3 C_6 H_5 O_7 + 3 H_2 O_7 + 3 CO_2$$

7. What product "escaped" when the bottle cap was opened? <u>carbon dioxide</u>

Conclusion:

Does this experiment support the Law of Conservation of Mass? Explain.

Yes, the mass of the reactants is equal to the mass of the products.

Does this experiment support the second statement in the beginning box? (The mass of the reactants must equal the mass of the products.) <u>Yes, the mass of the reactants is equal to the mass of the products.</u>

Part 2: The Balanced Chemical Equation

Questions:

- There are two types of cards that have an element in the middle surrounded by 4 hydrogen atoms. Explain your choice of cards. CH₄ is a neutral compound. The other card type is an anion with a -3 charge.
- Using the coefficients and compound models, write the balanced chemical equation for this reaction.
 CH₄ + 2 O₂ → 2 H₂O + CO₂
- 3. Name the two compounds that make up the reactants of this reaction.

sodium carbonate & calcium phosphate

- Write the formulas and give the names of what you predict will be the products of this reaction. Na₃PO₄ sodium phosphate & CaCO₃ calcium carbonate
- 5. Write your completed balanced equation here.

$$3 \text{ Na}_2\text{CO}_3 + \text{Ca}_3(\text{PO}_4)_2 \rightarrow 2 \text{ Na}_3\text{PO}_4 + 3 \text{ CaCO}_3$$

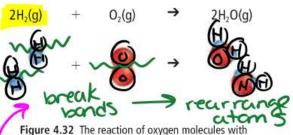
6. Describe how this balanced equation supports the Law of Conservation of Mass.

There are the same number of atoms of each element on either side of the equation.

Therefore there is the same mass on both sides. Mass of the reactants = mass of the products.

Part B: Balancing Chemical Equations

Figure 4.30 The hydrogen and oxygen in the balloon do not react until the balloon is touched by a flame (A). Then, an explosive chemical reaction occurs (B).


Law of Conservation of Mass

What happens to atoms of hydrogen and atoms of oxygen when the two gases are brought together and ignited?

Hydragen + oxygen burn + water re new atoms created in the flash? Are new atoms created in the flash? new product ... but NO New atoms

Are some destroyed?

no...matter is rearrange but not created or destroyed.

hydrogen molecules involves rearranging atoms in new ways.

When a chemical reaction occurs, new compounds are created, BUT ...

No new matter is created or destroyed; atoms are just rearranged as the atoms change partners to form new compounds.

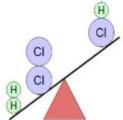
If there are \leq atoms of oxygen in the reactants, THERE MUST BE \leq atoms of oxygen in the products. Number of each of the in reactants = number of each of the in products. This is called **THE LAW OF** CONSERVATION OF ATOMS. And also explains why we must balance chemical equations.

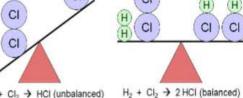
nemical reaction

"no matter is created or destroyed

If you could collect and measure all of the exhaust from this car, you would find that mass of reactants (gas + O2) = mass of products (exhaust).

The law of conservation of mass states that mass is conserved in a chemical reaction.


+ otal mas of the products is always equal to the total mas of the reactants in a chemical reaction.


The idea that atoms are CONSERVED (neither made nor destroyed) is believed to be true for all chemical reactions.

Balancin	g Chemical	Equations A bri	ef examination of the eq	uation for the de	ecomposition of	
mercury(II) ox	ide, $HgO_{(s)} \longrightarrow Hg_{(l)}$	$+ O_{2(g)}$, shows that it d	oes not obey the law of	conservation of	mass. The	
reactant, HgO	contains RS	The state of the s	ne products, Hg and O ₂ .			
4 9		To show that the mass b			Control of the contro	
		the formula equation ha	s to be <u>Dalan</u>	QC.	7B16 #	5
90	H3	Balancing a chemical ed reactant and/or product	are numbers	changes number that multiply t	the total	al
attan -	> Ha + O2	species that follows ther	n. eg. 2 HaO ~	neans a	x 420, 2	x Hz = 4=
Figure 4.19 The reactan	it in this realtion weighs				0 =	1×0 = 2=
Hg=X2	Hg= 1x2=2	rhese numbers ensured with the side of the equation.	on the reactant			roduct
0=1 xx		ember balancing must always the character will give a	iging of subscripts.		s and)
Note:	ntil you are finished o not start with aton	NH ₄) ₃ PO ₄ + NaOH - Melculs + icos I balancing, missing coe as that are easy or diffication of the control of the control of the coefficients that occur in more	fficients are treated as a	zeros!** to balance them	last.	Val
1		oups (those that don't co			i) are tough:	reed
		rs in one species on each				
		two species so as to bala ep is the only step where				
Vac (Acid II	weed a	the only step where	3×NG	on both sides.		
otuls in	(NH ₄) ₃ PO ₄ +	3 NaOH →	Na₃PO₄ + .	NH ₃ +	H_2O	
		anced one element. Booy nave fixed another eleme			er to solve.	
Mow p	lace a coefficient to	balance the atom (or gro	up) on the opposite side.			
stepes som	need IXIO	1_	JIX POL	4	12 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	
10 th go =	(NH ₄) ₃ PO ₄ +	3 _{NaOH} →	Na ₃ PO ₄ +	NH ₃ +	$_{-}$ H ₂ O	
Repeat	the process until al	of the elements are bala	nced.			
1=16,100S	53xN	3	. 1	3 -		
ter metals	LNH4 PO4 +	3 NaOH →	Na ₃ PO ₄ +	NH3 +	H_2O	
of lathos	Lauran	- C	l or o		Z m	
= Dan -	(NH ₄) ₃ PO ₄ +	<u>SNaOH</u> →		3 NH ₃ +	The second second	
SteP oxight Omit o	0= 4	0-3			I need 3	oxyger
Omit c	oefficients of 1 in y	our final answer. **Alway.	s do a check to make sure that al	ll atoms are balanced.	**	
step 5)	(NH4)3PO4 +	$\underbrace{3}_{\text{NaOH}} \longrightarrow$		$\frac{3}{1}$ NH ₃ + $\frac{3}{1}$	<u>3_</u> н‱	
H=hyp. 8	3×Hu	3×H=3		3x3	3,200	1
	3×4=12	Total H= 12+3		H=9 Total	H= 9+6	£15\

Rules for Writing Balanced Equations

- 1. Write a word equation for the chemical reaction
- √ Water → hydrogen + oxygen
- 2. Write a chemical formula for each of the reactants and products
- √ H₂O → H₂ + O₂
- 3. Use numbers in front of the formulae to balance the numbers of atoms on each side of the equation
 - 2H₉O → 2H₉ + O₉
- 4. Check each type of atom to make sure that the equation is balanced
- \checkmark 4xH+2xO \rightarrow 4xH+2xO
- 5. Include the symbols for the states of matter for the substances involved
 - \checkmark 2H₂O₍₀ \rightarrow 2H_{2(g)} + O_{2(g)}

Unbalanced and Balanced Equations

H₂ + Cl₂ → HCl (unbalanced)

reactants products

	reactants	products
Н	2	2
CI	2	2

PRACTICE

a = C

H: 2b=C+2d

(3) substitute a=1

2b= C+2d

2(1)=(1)+20

2=1+20

1 = 20

2-1 = 2d

2K+2H2O 7 2K0+1+ H,

2) et a= 1 (choose the variable)

that will be the most helpful

a=c

(1)=C=1

=こ

Mo: a = d

Example 2

Balance MoCl₃ + O₂ +

(): 2b = e

Assignment #3: Balancing Equations Review pg 17-20

Complete this assignment in the space provided on the following pages

Balancing Equations

Writing balanced symbol equations

There are four stages to writing a full equation for a reaction:

- 1. Write out the word equation
- 2. Work out the formulae for all elements and compounds present
- 3. Balance the equation
- 4. Add information about the state of each chemical (solid, liquid, gas or aqueous solution).

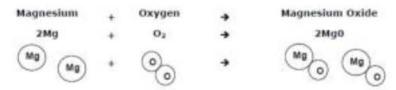
This worksheet is concerned with the third task - balancing symbol equations.

Example 1 - The reaction between magnesium and oxygen

Magnesium + Oxygen → Magnesium Oxide

We can work out (using valency or otherwise) that the formula for magnesium oxide is MgO. We need to remember that oxygen is a diatomic molecule and hence has the formula O₂.

We can now begin our symbol equation:


The next stage is to look at the number of atoms of each type of element on either side of the equation. If we start with one magnesium atom, we must finish the reaction with one. If we start with two oxygen atoms, we must also end up with two.

We can see from the diagram that there are the same number of magnesium atoms on either side of the arrow, but the oxygen atoms are not balanced. We cannot introduce a single oxygen atom to the right hand side. We can only introduce a whole magnesium oxide group. We do this by placing a 2 **before** the MgO formula.

We now have two oxygen atoms on each side of the equation, but the magnesium atoms no longer match. We have to introduce one more magnesium atom to the left hand side, We do this by placing a 2 in front of the magnesium symbol.

Our symbol equation is now balanced.

Balancing Equations - Answers

Task 1

a.	Sodium	+	Chlorine	→	Magnesium Oxide
	Na Na	+	(CI))	Na CI Na CI
Balance this →	2Na	+	Cl2	→	2NaCl

b.	Aluminium	+	Oxygen	>	Aluminium Oxide
	(AI) (AI)	+	000	→	AI O AI O
Balance this →	2Al	+	302	→	2Al ₂ O ₃

Task 2

a.	2Ca	+	O ₂	>	2Ca0		
b.	2Li	+	F_2	\rightarrow	2LIF		
c.	Mg	+	Br ₂	\rightarrow	MgBr ₂		
d.	4K	+	O_2	\rightarrow	2K ₂ 0		
e.	2AI	+	3Cl ₂	\rightarrow	2AICI ₃		
f.	4Fe	+	3O ₂	\rightarrow	2Fe ₂ 0 ₃		
g.	2H ₂	+	O_2	\rightarrow	2H ₂ O		
h.	H ₂	+	Cl ₂	\rightarrow	2HCl		
i.	S	+	O_2	\rightarrow	SO ₂		
j.	С	+	$2H_2$	\rightarrow	CH ₄		
k.	4Ag	+	O_2	\rightarrow	2Ag ₂ O		
I.	Ca	+	2HCl	\rightarrow	CaCl ₂	+	H_2
m.	Mg	+	2HCl	\rightarrow	MgCl ₂	+	H_2
n.	2Na	+	2HCI	\rightarrow	2NaCl	+	H ₂
0.	2AI	+	6HCI	\rightarrow	2AICI ₃	+	3H ₂

Writing and balancing equations

Skills: Interpreting, Numeracy, Knowledge

1 Define the Law of Conservation of Mass.

The **law of conservation of mass** states that **mass** in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the **law of conservation of mass**, the **mass** of the products in a chemical reaction must equal the **mass** of the reactants

2 Apply the Law of Conservation of Mass by balancing the following equations.

a
$$CH_{4(g)}$$
 + $2O_{2(g)}$ \rightarrow $CO_{2(g)}$ + $2H_2O_{(f)}$
b $2KI_{(sq)}$ + $Pb(NO_3)_{2(sq)}$ \rightarrow $PbI_{2(s)}$ + $2KNO_{3(sq)}$

$$c H_{3}PO_{4(sq)} + 3KOH_{(sq)} \rightarrow 3H_{2}O_{(0)} + K_{3}PO_{4(sq)}$$

$$(e2NH_{Ne)}$$
 + $\frac{5}{2}O_{Ne)}$ - $2NO_{Ne)}$ + $3H_2O_{Ne)}$ \ \text{multiply by the bottom number in the fraction}

You must apply the following steps to write balanced chemical equations.

- Write the word equation for the reaction.
- Directly underneath the word equation, write the unbalanced formula equation.
- Add subscripts—(s), (l), (g) or (aq).
- Balance the equation.

Note: Dilute means a solution with water and therefore the appropriate subscript is (aq).

The table below lists various compounds and the chemical formula of each compound.

Compound name	Compound formula			
Hydrochloric acid	HCI			
Nitric acid	HNO ₃			
Sulfuric acid	H ₂ SO ₄			
Magnesium chloride	MgCl ₂			
Barium sulfate	BaSO ₄			
Sodium sulfate	Na ₂ SO ₄			
Water	H ₂ 0			

Compound name	Compound formula			
Carbon dioxide	CO ₂			
Calcium carbonate	CaCO ₃			
Calcium nitrate	Ca(NO ₃) ₂			
Magnesium hydroxide	Mg(OH) ₂			
Barium nitrate	Ba(NO ₃) ₂			
Sodium hydroxide	NaOH			
Sodium carbonate	Na ₂ CO ₃			

Writing and balancing equations

Skills: Interpreting, Numeracy, Knowledge

- Use the information in the table on page 1 of this worksheet to construct balanced chemical equations, including subscripts, for each of the following reactions.
 - a Dilute hydrochloric acid is added to solid magnesium hydroxide, producing water and the soluble salt magnesium chloride.

 $2HCl_{aa}+Ma(OH)_{2(s)}\rightarrow 2HaO(e)+MaCl_{2(aa)}$ (means it has dissolved in Hao)

b Dilute nitric acid is added to solid calcium carbonate, producing bubbles of carbon dioxide, water, and the soluble salt calcium nitrate.

water, and the soluble salt calcium nitrate. $2HNO_3(aq) + Ca(O_3(s) \rightarrow CO_2(q) + H_2O(q) + Ca(NO_3)_2(aq)$

c When dilute sodium sulfate solution is added to dilute barium nitrate solution, barium sulfate precipitates, leaving sodium nitrate in solution.

Na204(aq)+ Ba(NO3)2(aq) -> BaSO4(5) +2NaNO3(aq)

d Dilute sodium hydroxide is added to dilute sulfuric acid, producing water and the soluble salt sodium sulfate.

2 NorOHrago + Hassyrago -> 2Haller + Norassyrago

e Dilute sulfuric acid is poured over solid sodium carbonate, producing carbon dioxide, water and the soluble salt sodium sulfate.

Hastycog+ NacO3(s) > CO2(g) + HaO(e)+ Na2SOycog

- 4 Construct balanced equations, including subscripts, for the following reactions. You may need to use the cross method from Worksheet 1.1 to construct the chemical formulas first on a separate sheet of paper.
 - a Iron metal reacts with chlorine gas to produce iron chloride.

b Sodium chloride solution is mixed with silver nitrate solution, producing a precipitate of solid

b Sodium chloride solution is mixed with silver nitrate solution, producing a precipitate of solid silver chloride.

Nachagy + AgNOziagy > AgChis) + NaNOziago

c Lead nitrate solution is added to sodium sulfate solution, producing lead sulfate precipitate.

Pb(NO3)2 + Na2504(aq) -> Pb504(s) + NaNO3(aq)

d Sulfur dioxide gas reacts with oxygen to produce sulfur trioxide gas.

25029 + O29 >25036)

Oz= diatomic molecule

20