1) **Calculating Slope**

One of the most important properties of straight lines is their **angle from the horizontal (i.e. steepness)**. The mathematical term for steepness is "slope".

Investigation #1:
1) On the coordinate grid below, graph the points $A(-3, -5)$ and $B(5, 7)$ and join them to form a line segment.

2) Create a right angle triangle where AB is the hypotenuse and C is the third vertex.

3) **Count the squares from A to C** and B to C and record your numbers.

Vertical change (sometimes called rise):

$$\Delta y = 12$$

Horizontal change (sometimes called run):

$$\Delta x = 8$$

A vertical change represents the change in y-values of your coordinate points. This is represented by Δy and is calculated by subtracting the two y-values of the coordinates.

$$y_2 - y_1 = \Delta y = 7 - (-5) = 12$$

A horizontal change represents the change in x-values of your coordinate points. This is represented by Δx and is calculated by subtracting the two x-values of the coordinates.

$$x_2 - x_1 = \Delta x = 5 - (-3) = 8$$

4) Calculate Δy and Δx for the line segment AB.

NOTE: (x_1, y_1) and (x_2, y_2) coordinates

$$\Delta y = \frac{y_2 - y_1}{2}$$

$$\Delta x = \frac{x_2 - x_1}{2}$$

The order is important!
Investigation #2:

1) On the coordinate grid below, graph the points $C(-4,7)$ and $D(3,-8)$ and join them to form a line segment.

2) Create a right angle triangle where CD is the hypotenuse and E is the third vertex.

3) Count the squares from C to E and D to E and record your numbers.

 Vertical change (sometimes called rise):

 From C → D, 15 (down)

 Horizontal change (sometimes called run):

 From C → D, 7 (right)

4) Calculate Δy and Δx for the line segment CD.

 $C(-4,7)$
 $\Delta y = -8 - 7 = -15$

 $D(3,-8)$
 $\Delta x = 3 - (-4) = 7$

 $m = \frac{\Delta y}{\Delta x} = \frac{-15}{7}$

The slope, m, of a line segment joining $P(x_1,y_1)$ and $Q(x_2,y_2)$ is given by

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{vertical change}}{\text{horizontal change}}$$

When is it most appropriate to use $m = \frac{\text{Rise}}{\text{Run}}$ to calculate the slope of a line segment?

- Only when you are given a graph (count on grid)

When is it most appropriate to use $m = \frac{y_2 - y_1}{x_2 - x_1}$ to calculate the slope of a line segment?

- When we are given coordinates, or a table of values.

*Pick any 2 points => it is linear (x_1, y_1) and (x_2, y_2)
Example #1: Determine the slope of the each line segment.

Which line segments in have a positive slope? AB, EF

Which line segments in have a negative slope? CD

Example #2: Determine the slope of the each line segment.

a) \(C(0, -7) \) to \(H(4, 0) \)

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - (-7)}{4 - 0} = \frac{7}{4}
\]

b) \(M(5, -2) \) to \(N(-1, 4) \)

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{-1 - 5} = \frac{6}{-6} = -1
\]

SUMMARY:

<table>
<thead>
<tr>
<th>Slope</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>![positive slope diagram]</td>
</tr>
<tr>
<td>negative</td>
<td>![negative slope diagram]</td>
</tr>
<tr>
<td>zero</td>
<td>![zero slope diagram]</td>
</tr>
<tr>
<td>undefined</td>
<td>![undefined slope diagram]</td>
</tr>
</tbody>
</table>

Homework

Assignment #1
Page 5
es 1-10 questions #1-34
Characteristics of Linear Relations

Key Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear relation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel slopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perpendicular lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perpendicular slopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midpoint formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Linear Relations:

- A relationship between two quantities that when graphed will produce a **straight line**.
- One quantity **increases or decreases at a constant rate** with respect to another.

Eg. \(y = -3x \) \(C = 50m + 1000 \) \(p = 40q \)

LINE SEGMENT: A part of a line that has two endpoints and includes all the points between the endpoints.

1. Using a dashed or coloured line, graph the relation represented by the equation \(y = -3x \).

2. Using a solid or different coloured line graph the same relation if the domain is \(0 \leq x \leq 2 \).

The solid section you just plotted is a line segment, a section of the dashed line.

3. What are the endpoints of the line segment? ________

4. What are the endpoints of the dashed line? ________

5. What are 5 properties you could use to describe the line segment above?

6. Which of these properties are also true for the dashed line above?
Slope of a Line (or Line Segment): (Rate of Change)

Consider the line segment below.

7. What is the vertical change (rise) between the endpoints?

8. What is the horizontal change between the two endpoints?

9. What is the ratio of rise to run as a fraction?

10. How fast does the relationship change in the vertical direction when compared to the horizontal direction?

Your notes here...
11. **Challenge Question:**
Find the slope (rate of change) of the line below.

12. **Challenge Question:**
Find the slope (rate of change) of the line segment with end points at A(-4,0) and B(0,3).
Find the slope (rate of change) of the line segment with end points at $A(-4,0)$ and $B(0,3)$.

Strategy 1: Plot the points on a grid and follow the same solution strategy to the left.

Strategy 2:
We can see the rise is actually a change in the y-direction...a difference in the y-values.
For the points: $A(-4,0)$ and $B(0,3)$

\[
\text{rise: } y - y = 3 - 0 = 3 \\
\text{run: } x - x = 0 - (-4) = 4
\]

Therefore $\text{slope } = \frac{\text{rise}}{\text{run}} = \frac{3}{4}$

IMPORTANT
To use this strategy...you must be consistent with your "starting" x and y values in calculating rise and run.

Note the formula on the next page to help you do this.

Recall:
Slope is the ratio of $\frac{\text{rise}}{\text{run}}$. We can count gridlines from point-to-point to get $\frac{\text{rise}}{\text{run}} = \frac{3}{4}$

NOTE:
If you started at the right point...

\[
\frac{\text{rise}}{\text{run}} = \frac{-3}{-4} = \frac{3}{4}
\]

We would be moving in the "negative" direction but the slope calculated would be the same.
Slope of a Line (or Line Segment)

Slope is the measure of the "steepness" of a line. It is represented with the symbol \(m \).
Slope also describes the direction of the line.

The slope is found by dividing the vertical change (the rise or fall) by the horizontal change (the run).

\[
m = \frac{\text{rise}}{\text{run}} \quad \text{or} \quad m = \frac{y_2 - y_1}{x_2 - x_1}
\]

Be Careful with Negatives!

<table>
<thead>
<tr>
<th>Positive Slope</th>
<th>Negative Slope</th>
<th>Zero Slope</th>
<th>Undefined Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg. (m = 2)</td>
<td>Eg. (m = -3)</td>
<td>Eg. (m = 0)</td>
<td>Eg. (m = \infty)</td>
</tr>
<tr>
<td>Rises from left to right</td>
<td>Falls from left to right</td>
<td>Rise is 0. 0 divided by any "run" will still = 0.</td>
<td>Think... the run is 0. Division by 0 is undefined.</td>
</tr>
</tbody>
</table>

13. Describe, in your own words, how you find the slope of a line segment.

14. How does a line segment differ from a line?
Find the rise, the run and the slope for the following lines by counting units.
In most cases, you will need to pick two points on the line to use.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. rise=</td>
<td>16. rise=</td>
<td>17. rise=</td>
<td>18. rise=</td>
</tr>
<tr>
<td>run=</td>
<td>run=</td>
<td>run=</td>
<td>run=</td>
</tr>
<tr>
<td>slope=</td>
<td>slope=</td>
<td>slope=</td>
<td>slope=</td>
</tr>
</tbody>
</table>

Use the formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ to find the slopes of line segments with the following endpoints.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23. (0,0) and (2,3)</td>
<td>24. (1,3) and (2,7)</td>
<td>25. (−5,7) and (−4,−2)</td>
</tr>
</tbody>
</table>
26. Use the formula \(m = \frac{y_2 - y_1}{x_2 - x_1} \) to find the slopes of line segments with the following endpoints.

26. \((5,7)\) and \((3,3)\)
28. \((-4,5)\) and \((0,5)\)
30. \(\left(\frac{1}{2}, 4\right)\) and \((2, -6)\)

27. Find the coordinates of any other point on this line.

29. Find the coordinates of any other point on this line.

31. Find the coordinates of any other point on this line.

32. The slope of a line is -2. If the line passes through \((x, -1)\) and \((-4, 9)\), find the value of \(x\).

33. The slope of a line is \(-\frac{2}{3}\). If the line passes through \((5, 2)\) and \((6, -4)\), find the value of \(b\).

34. Challenge
Given a point on the line and the slope, sketch the graph of the line.

\((2,3), m = -2\)