10) equations of lines in three forms...continued...

Remember! What are the three different equations of lines?
(1) Point-Slige form: fin g $y-y_{1}=m\left(x-x_{1}\right)$ where $\left(x_{1}, y_{1}\right)^{\text {point }}$
(2) Slope-intercept form: $y=m x+b$
(3) General form: $A x \pm B y \pm C=0$

Example 1: Write the following equations in general form.
Remember: General form means No Fraction's or decimals, (integers coney) The x coefficient always has ob e (\subseteq Positive.
a)

Example 2: Write the equation of the line in all three forms.
$\begin{array}{ll}\text { a) } m=-3 & x y \\ (5,2)\end{array}$
(1) Point-slope Form:

$$
y-2=-3(x-5)
$$

(2) sepe-intercept form:

$$
\begin{aligned}
& y-2=-3(x-5) \\
& y-2=-3 x+15 \\
& +1+2 x+2 \\
& y=-3 x+17 \text { yint=1 }
\end{aligned}
$$

(3) General Form:

$$
\begin{aligned}
& \text { reneral Form: } \\
& \begin{array}{l}
+3 x^{\prime}+3 x+17 \\
-17 \\
-17 \\
\text { rearrange }
\end{array} 3 x+y-17=0
\end{aligned}
$$

b) $m=-\frac{2}{5} \quad(6,-1)$
(1) Point slope form:

$$
\begin{aligned}
& 1 \text { slope form } \\
& y-(-1)=-\frac{2}{2}(x-6) \\
& y+1=-2(\gamma-6)
\end{aligned}
$$

$$
y+1=-\frac{2}{5}(x-6)
$$

(2) Slope-Intercept farm:

$$
\begin{aligned}
& \quad \begin{array}{l}
\left(y+1=-\frac{2}{5}(x-6)\right) \times 5 \\
5 y+5=-2(x-6) \\
5 y+5=-2 x+12 \\
\frac{5 y}{5}=-\frac{2 x+7}{5} \quad y=-\frac{2}{5} x+\frac{7}{5}
\end{array} \\
& \text { (3) General Form: }
\end{aligned}
$$

$$
\begin{aligned}
& \left(5 y=\frac{-2}{7} x+\frac{7}{5}\right) \times 5 \\
& 2 x+5 y-7=0
\end{aligned}
$$

Example 3: Write the equation of the line, in general form, that has the points $(8,-2)$ and $(6,3)$. $\quad *$ slope $=$?
(1) Find the slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-(-2)}{6-8}=\frac{5}{-2}=-\frac{5}{2}$
(2) if $m=-\frac{5}{2}$ and, $(8,-2),(6,3)$ are on the the line. choose a coordinate t and use slope-point form.

$$
\begin{aligned}
& y-y=m\left(x-x_{1}\right) \\
& y-(-2)=-\frac{5}{2}(x-8) \\
& {\left[y+2=-\frac{5}{2}(x-8)\right.} \\
& 2 y+4=-5(x-8) \\
& 2 y+4=-5 x+40 \\
& +5 x+5 x
\end{aligned}+2 \quad\left[\begin{array}{r}
5 x+2 y+4=4 \varnothing \\
-40-40 \\
5 x+2 y-36=0
\end{array}\right.
$$

Example 4: Write the equation of the line, in slope intercept form, that has the point $\begin{gathered}\boldsymbol{x}_{1}, y_{1} \\ 9,5) \\ x_{2} \\ \boldsymbol{x}_{2} \\ y_{2}\end{gathered}$
(1) Find slope: $m=\frac{4-5}{-6-9}=\frac{-1}{-15}=\frac{1}{15} \quad y$ int: $\left(0, y_{2}\right)$
(2)Point-Slope Form
\rightarrow (2) Solve for 4-int \Rightarrow slope

$$
\begin{aligned}
& y-5=\frac{1}{15}(x-9) \\
& y-5=\frac{1}{15 x}-\frac{9}{15} \\
& +15+\frac{1}{5} \\
& y=\frac{1}{15} x-\frac{9}{15}+5 \\
& y=\frac{1}{15} x-\frac{9}{15}-\frac{75}{15} \quad y=\frac{1}{15} x-\frac{66}{15}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{15}=\frac{y_{2}-5}{0-9} \\
& \mathcal{L} \frac{1}{15}=\frac{y-5}{-9} \downarrow \\
& 1 \times(-9)=15(y-5) \\
& y=m x+b \\
& y=\frac{1}{15} x+\frac{22}{5} \\
& \begin{array}{r}
-9=15 y-78 \\
+75
\end{array} \\
& \frac{66}{15}=\frac{15 y}{15} \quad y=\frac{66}{15}=4.4=" b " \\
& 0.2=\frac{2}{10} \\
& 1.25=1, \frac{25}{100} \\
& 1.125=1 \frac{125}{1000} 5
\end{aligned}
$$

Example 5: Write the equation of the line, in general form, that has the points $(-0.9,0.2)$ and $(-0.1,-0.8)$.
(1) Find Slope $m=\frac{-0.8-0.2}{-0.1-(-0.9)}=\frac{-1}{0.8}=-1.25$
(2) $m=-1.25$ and point ($-0.9,0.2$)

$$
\begin{gathered}
y-0.2=-1.25(x+(-0.9)) \\
(y-0.2=-1.25 x-1.125) \times 1000 \\
1000 y-200=-1250 x-1125 \\
+1250 x+1125+1250 x+1125 \\
\therefore 1250 x+1000 y+925=0
\end{gathered}
$$

157. Challenge \#7:

Write the equation of a line in general form given that the line passes through $(3,4)$ and $(4,6)$.

Given two points:

When given two points we must first find the slope of the line. Then we will follow the same process as above.

Write the equation of the line that passes through $(3,4)$ and $(4,6)$.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Find the slope. } \\
m=\frac{6-4}{4-3}=\frac{2}{1}=2 & \text { The slope is } 2 . \\
2=\frac{y-4}{x-3} & \text { Substitute slope and ONE of the points. } \\
2(x-3)=y-4 & \text { Cross-multiply. Point-slope form } \\
2 x-6=y-4 & \text { Expand and simplify. } \\
2 x-y-2=0 & \text { Write in general form. } \\
y=2 x-2 & \text { And in slope-intercept form if necessary. }
\end{array}
$$

Write the equation of the line that passes through the following two points in general form.
158. $(3,4)$ and $(4,6) \quad$ Explain your reasoning

[^0]Write the equation of the line that passes through the following two points in general form.

$160 .(-5,-8)$ and $(-7,-9)$	$161 .(-1,-2)$ and $(3,0)$	$162 .(0,4)$ and $(5,0)$
$163 .(8,-7)$ and $(-6,-7)$		

[^0]: 159. $(-2,-4)$ and $(0,6)$

 Explain your reasoning
 \qquad
 \qquad
 \qquad
 \qquad
 \qquad

