Chemistry 11

UNIT 4: CHEMICAL REACTIONS है STOICHIOMETRY

BOOK 2 : STOICHIOMETRY

Name:
KEY

Block:

Part A Intro to Stoichiometry - Calculating with Chemical Change
The reaction between phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, and potassium hydroxide, KOH , can produce three different products:

$$
\left.\begin{array}{ll}
\text { A } & 1 \mathrm{H}_{3} \mathrm{PO}_{4}+\pi \mathrm{KOH} \rightarrow \\
\mathrm{~B} & \mathrm{H}_{3} \mathrm{P}_{4}+2 \mathrm{KOH} \rightarrow \\
\mathrm{C} & \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \\
\mathrm{KH}_{2} \mathrm{P} 0_{4} \\
\mathrm{~K}_{2} \mathrm{HPO}_{4} \\
\mathrm{~K}_{3} \mathrm{PO}_{4}
\end{array}\right]+3 \mathrm{H}_{2} \mathrm{O}
$$

* vatic of reactants, Determines the
Each of the products $\mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{~K}_{2} \mathrm{HPO}_{4}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$, has different properties and different uses. products formed.
For example, $\mathrm{KH}_{2} \mathrm{PO}_{4}$ is used in baking pounder, $\mathrm{K}_{2} \mathrm{HP}_{4}$ is used in some \qquad fertilizes and antifreezes, and $\mathrm{K}_{3} \mathrm{P}_{4}$ is used in liquid \qquad socips
The products of this chemical reaction are based on the \qquad MOLAR RATIO of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and KOH used.
Stoichiometry (stoicheion meaning "element" and metro meaning "measure"): The relationship between amounts of reactants used, and the products produced. Quantitatively relate amounts of reactants products
With stoichiometry, we can predict the amount of a specific product created when a given amount of reactant is used.

How does one state the chemical reaction equation above? It turns out that there are actually two ways:
 NO^{0} d ${ }^{\circ} \Psi^{\text {In chemistry }}$ we will sally think in terms of mOLES rather than molecules bl its nearly impossible to measure/weigh individual molecule indued it mould
The mole ratios of coefficients in the balanced reaction equation gives us the mole conversion factors: be a HUGE \#

2 mol th: 1 mol 122 Conversion
2 mol $\mathrm{Hz}: 12$ mol HzO Gadders \qquad each one.
EXAMPLE: Consider the reaction equation $/ \mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$.

* coefficient How many molecules of $\mathrm{N}_{\mathbf{2}}$ are required to react with 15 molecules of $\mathrm{H}_{\mathbf{2}}$?
can alsorefer since, I molecule of N_{2} reacts with 3 molecules of H_{6} to the number of molecules ...ratio is the same moles or molec.

IMPORTANT: Use completely-labelled units (eg. "molecule N_{2} " not just "molecule") so you

know which coefficient goes on top and which goes on the bottom of the conversion factor.

Example Suppose that 1.50 moles of aluminum were produced during a reaction between zinc and aluminum chloride. How many moles of zinc reacted?
Balanced Chemical $R_{x n}: 3 \mathrm{Zn}(s)+2 \mathrm{AlCl}_{3}\left(a_{2}\right) \rightarrow 2 \mathrm{Al}(s)+3 \mathrm{ZnCl}_{2}\left(a_{q}\right)$ (single replacement)? 1.50 mol Known: 1.50 mol mol ratio: $3 \mathrm{Zn}: 2 \mathrm{Al} \Rightarrow \frac{3 \mathrm{~mol} \mathrm{2n}}{2 \mathrm{~mol} \mathrm{Al}} \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} \mathrm{2n}}$ * Start with conversion factors girenvalue 1.50 mol AT $\left\lvert\, 3 \mathrm{~mol} 2 \mathrm{Zn} \quad \begin{aligned} & 2 \mathrm{~mol} \text { AT }\end{aligned}=2.25 \mathrm{~mol} \mathrm{Zn}\right.$

The Mole Bridge
As we have seen earlier, you can convert between the different species in the chemical reaction equation. To do this, however, you must get your substances into mo ES : Only moles can cross the mole bridge!

Kn.

(2) know: $428.5 \mathrm{~g} \mathrm{CaH} \mathrm{H}_{2} \mathrm{O}_{0}$? $\mathrm{gH}_{2} \mathrm{O}$
(3) Plan mass (A) \rightarrow moles (A) \rightarrow mole (B) \rightarrow mass (B)
(4) call:

 \angle gas

(PRACTICE What mass of $\mathrm{C}_{3} \mathrm{H}_{8}$ is required to produce 100.0 g of $\mathrm{H}_{2} \mathrm{O}$?

$$
\frac{1}{1 \mathrm{C}_{3} \mathrm{H}_{8 \times 9}+}+\frac{5}{? 9} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{CO}_{2(9)}+\frac{4 \mathrm{H}_{2} \mathrm{O}_{(0)}}{100.0 \mathrm{~g}+\mathrm{H}_{2} \mathrm{O}}
$$

mass $\mathrm{H}_{2} \mathrm{O} \rightarrow$ moles $\mathrm{H}_{2} \mathrm{C} \rightarrow$ moles $\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$ mass $\mathrm{C}_{3} \mathrm{H}_{8}$

$$
=\frac{61.1}{(3 s 5)} g C_{3} H_{8}
$$

Basic Stoichiometry Problems

Answers

1. $6.8 \mathrm{~g} \mathrm{NH}_{3}$
2. 22 g Fe
3. $3.09 \times 10^{3} \mathrm{~g} \mathrm{CO}_{2}$
4. 2.17 g AI
5. 4.91 g Zn
6. $0.30 \mathrm{LHNO}_{3}(300 \mathrm{~mL})$
7. What mass of iron must be reacted to produce 32 grams of iron (III) oxide?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

7. 7.5 M HCl
8. $0.0094 \mathrm{~L} \mathrm{AgNO}_{3}(9.4 \mathrm{~mL})$
9. 0.341 M KOH
10. What mass of carbon dioxide forms when 1.00 kg of octane is burned?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

4. What mass of aluminum is needed to react with 6.4 g of iron (III) oxide?

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

11. $0.78 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$
12. 3.50 M HCl
13. 1.91 g Cu
14. $120 \mathrm{~kg} \mathrm{O}_{2}$
15. What mass of zinc will react with 50.0 mL of 3.00 M HCl ?

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

6. How many mL of $2.00 \mathrm{M} \mathrm{HNO}_{3}$ is needed to consume 5.4 g of aluminum?

$$
2 \mathrm{Al}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2}
$$

7. $2 \underline{0} \mathrm{~mL}$ of HCl is needed to consume 2.8 g Fe . What is the concentration of HCl ?
$2 \mathrm{Fe}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2}$
8. How many mL of $0.80 \mathrm{M} \mathrm{AgNO}_{3}$ will exactly react with 10.0 mL of $0.25 \mathrm{M} \mathrm{AlCl}_{3}$?
$3 \mathrm{AgNO}_{3}+\mathrm{AlCl}_{3} \rightarrow 3 \mathrm{AgCl}+\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
9. 25.0 mL of $0.240 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ react exactly withy 35.2 mL of KOH . Determine the concentration of KOH. $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
10. How many mL of $0.60 \mathrm{M}_{3} \mathrm{PO}_{4}$ will react with $3 \underline{\mathrm{~g}} \mathrm{~g}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$?
$2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$
11. What mass of aluminum hydroxide would react exactly with 15.0 mL of 2.00 M HCl ?

$$
3 \mathrm{HCl}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

12. What concentration HCl is needed so that 400 mL will react with 17.0 g of magnesium? $\quad \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
13. What mass of copper will react with 10.0 mL of 12.0 M nitric acid?

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

14. How many kilograms for oxygen are needed to react with 51 kg of ammonia?

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Chap 7: Mole Ratio in Reactions

1. How many moles of O_{2} are produced from 1.50 moles of KClO_{3} ?
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
2. How many moles of H_{2} are needed to react with 8.0 moles of N_{2} ?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
3. How many moles of HCl are needed to form 4.5 moles of H_{2} ?
$2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
4. How many moles of water form when 0.50 moles of O_{2} react?
$4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
5. How many moles of methane can react with 24.0 moles of O_{2} ?
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
6. How many moles of calcium phosphate form when 2.0 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ react?
$3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$
7. How many moles of Mg can react with 0.40 mol HCl ?
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
8. How many moles of NaHCO_{3} must decompose to produce $0.80 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$?
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Answers:

1. 2.25 mol
2. 24 mol
3. 9.0 mol
4. 0.43 mol
5. 12.0 mol
6. 0.67 mol
7. 0.20 mol
8. 1.6 mol

Part B: Stoichiometry Calculations Involving - Molar Concentration
Remember... $M=C=n^{k}$ number of motes

$$
\begin{gathered}
\text { Rent ration } \\
\text { conc... }
\end{gathered} M=C=\frac{n}{V_{\pi}} \text { volume in } L \text { TiRES }(L)
$$

Stoichiometry calculations are based on the relationship of moles of 1 chemical and moles (or molecules) of another chemical.

I based on a

2 Types of problems involving volume:
(always try to convert to mol)

1) Use " 22.4 L "
(2) Calculate when it'S NOT I Gas a NOT
volume or Molarity - Mol STP
(often find concentration $\frac{\text { mol }}{L}$ used as a a
IMPORTANT: If a VOLUME is mentioned, and the problem involves a molarity, DO NOT assume that "22.4 L" inversion.
factor.
should be used. The use of "22.4 L " is justified only if the substance being referred to is a gas AND if the key phrase "at STP" is mentioned along with the volume.

Example I

$$
\mathrm{CaCO}_{3}(\mathrm{~s})
$$

Tums ${ }^{\mathrm{TM}}$ is an antacid composed primarily of calcium carbonate (chalk), and stomach acid is a dilute solution of hydrochloric acid. The neutralization reaction between CaC_{3} and stomach acid is represented by the equat(23) ? L (B)
 know: 0.750 g 0.001 M
a) A tablet of Tums ${ }^{\mathrm{TM}}$ has a mass of 0.750 g . What volume of stomach acid having $[\mathrm{HCl}]=0.0010$ Mi neutralized by a 0.750 g portion of CaCO 3 ?
plan:

Molarity volume (B)

b) What volume of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP is produced if 1.25 L of 0.0055 M HCI reacts with an
excess of CaCO2 $\quad \mid \mathrm{mol}=22.4 \mathrm{C}$

Example 2 Consider the following reaction:
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}-\gg \mathrm{K}_{2} \mathrm{SO}_{4}-2 \mathrm{H}_{2} \mathrm{O}$

$$
\sqrt{2.100 \mathrm{M}}=\frac{0.100 \mathrm{~mol}}{1 \mathrm{~L}}
$$

a) What mass (in g) of water is produced when 125 mL of a $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is reacted with excess KOH?

b) What volume of 0.050 M KOH solution is needed to completely react wi th 78 mL .

A TITRATION is a method used to determine the concentration of an unknown solution.

- How You Do It:

Measure the volume of the solution of known concentration (the known solution) needed to completely react with a certain volume of the solution of unknown concentration (the unknown).

- Why It Works:

HCl (Analyte): mol $\mathrm{HCI}=$ (concentration) (volume) colour change = equivalence point" = equal mols mol HCI = mol NaSH ($1: 1$ ratio) ${ }^{\text {(moleratio }}$ $[\mathrm{NaOHI}]=$ molarity $=\frac{\mathrm{mol} \mathrm{NaOH}}{\text { volume (L) }}=\frac{\text { ? [NaOHI] }}{\text { "unknown" }}$

How much you
added from burette

A \qquad meas cred \qquad amount of a solution is reacted \rightarrow with known volume of another solution (one of the solutions has an concentration) until a desired EQUIVALENCE POINT is reached.
Anally EqUllask all reactants hare been used up. The mol of acid $\left(H^{*}\right)$ are equal e to the moles al base (OHH) (mol ratio from equation) The equivalence point is recognized by an indicator \Rightarrow change colour \sim pH 17

There are many different types of titrations but they all work on the same principle:
(In Chemistry 11, we will only look at Acid-Base Reaction Titrations.)

$$
e g \text {. } A+B
$$

- As you combine the solutions, the chemicals react, consuming each other to form products.

1. Until you've added enough of reactant B reactant A is in excess \uparrow
2. Once you've added just enough to complete the reaction, $A=B$ (equivalence po int)
3. Adding more of reactant Banter reaction is over) results in reactant B "in excess" Q

- The \qquad equivalence point is the "point" in the acid-base titration where all the reactants have been used up (and none are in excess); the number of moles of each reactant perfectly obeys the stoichiometry (mole ratios) of the reaction equation.

Example 3
$0.0500 \angle[H C T=$? $\leftarrow M \quad D$ balanced equation When 50.0 mL of HCl were titrated with 0.250 M NaOH , it was determined that $75.0 \xrightarrow[\mathrm{~mL}]{\rightarrow 0.075 \mathrm{~L}) ~}$ were needed to reach the equivalence point. Determine the $[\mathrm{HCl}]$.
mute $=\mathrm{H}^{+}: \mathrm{OH}^{-}$
$1: 1$
$\left|\mathrm{HCl}_{\text {(aq) }}+\mathrm{NaOH}_{\text {(aq }} \longrightarrow\right| \mathrm{NaCl}(\mathrm{aq})+\mid \mathrm{H}_{2} \mathrm{O}(\mathrm{e})$
(3) mol af acid (HCI) $=0.01875 \mathrm{~mol} \mathrm{HCl}$
(1) mol al base (NaOH) $\mathrm{NaOH}=(0.250 \mathrm{M})(0.075 \mathrm{~L})$ $M=\frac{\text { mol }}{L} \underbrace{}_{\text {mols } \mathrm{NaOH}=1}=0.01875 \mathrm{~mol}$ (vol.) $)^{\text {(2) equivalence point }}$

$$
\text { molarity: }[H C 1]=\frac{\mathrm{mol}}{\mathrm{Vol}(\mathrm{~L})}=\frac{0.01875 \mathrm{~mol}}{0.0500 \mathrm{~L}}
$$

Example 4 If 19.8 mL of phosphoric acid reacts completely with 25.0 mL of 0.500 M KOH , then what is the
0.0198 L concentration of the phosphoric acid? 0.0250 L

$$
\begin{aligned}
& 1 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{KOH}(\mathrm{aq}) \longrightarrow \mid \mathrm{K}_{3} \mathrm{PO}_{4 / 4 a}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \\
& \left.\mathrm{H}_{1}^{+}: 3 \mathrm{OH}^{-}\right\} \text {e equivalence point. }
\end{aligned}
$$

Two methods:
(A) (1) $\mathrm{mol} \mathrm{KOH}=(0.500 \mathrm{M})(0.0250 \mathrm{~L})$
(2) © equivalence point mol KOH: $\mathrm{mol}_{3} \mathrm{PO}_{4}$

$$
0.0125 \mathrm{~mol} \mathrm{KOH} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{3 \mathrm{~mol} \mathrm{KOH}}=0.0041665 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}\right.
$$ Be sure to clearly number each assignment with appealing.

(3) $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\frac{\mathrm{mol}}{\mathrm{vol}(\mathrm{L})}=\frac{0.00416 \overline{\mathrm{~mol}}}{0.0198 \mathrm{~L}}=0.210 \mathrm{M} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$

Part D: Stoichiometry of Limiting \& Excess Quantities

Limiting Reactant: (L.R.)
the reactant that russout first, moons of achenes which "Limits" the product for med, גM Button or stops the reaction from continuing. * the L.R. controls now much product is formed. - Left OVER
Excess Reactant: the which does not run out, there REACTANT

AMOUNTS OF PRODUCTS AFTER will be same of this leftover," "in excess" when the reaction is complete.

Since the limiting reactant is what determines when the reaction is over, it is this quantity that we use for stoichiometric calculation.
(! ANIMATION: https://phet.colorado.edu/en/simulation/reactants-products-and-leftovers Let's consider an analogy: Suppose I'm making a sandwich. In each sandwich I want:
use to and out how much product?

Br
 bread, and have an excess of \qquad
...Similarly, chemical reactions frequently are carried out in such a way that one or more of the reactants actually are present in excess amounts. (only ever I Limiting reactant)
Some reasons for having an excess amount:

- deliberately adding an excess of 1 reactant to make sure all of a second reactant used (maybe too expensive to waste, or harmful to the environment)
- unavoidably having a reactant in excess because a limited amount of another reactant is available. \mathbb{Q}
\rightarrow determines the amount

The reactant that gets used up first is called the limiting reactant because it limits how far the reaction can go. product All other reactants that are left over after the reaction is finished are called excess reactants.

Consider the simple reaction: $2 \mathrm{Na}(\mathrm{s})+\mathcal{1} \mathrm{Cl}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NaCl}(\mathrm{s})$.
9 How many moles of Cl_{2} would you need to use up 2 moles of sodium? Answer: 1 mole.
i What would happen if 3.0 moles of sodium and 2.0 moles of chlorine reacted?
Answer: Since 3.0 moles of sodium is only sufficient to react with 1.5 moles of chlorine, $(2: 1 r a+i 0)$ all of the sodium will be consumed and 0.50 moles of chlorine will be left in excess.

9 If 50.0 g Na and $80.5 \mathrm{~g} \mathrm{Cl}_{2}$ were reacted?
Answer: You cannot directly compare numbers of atoms by comparing masses. You must convert to

Consider the reaction between carbon monoxide and oxygen gas:

b) Sketch any remaining reactants and products to show what will be present once the reaction is complete.
c) How many CO 2 particles are formed? 4 moles af CO_{2}
d) How many excess reactant particles remain?

1 molecule of O_{2}
$\therefore C O$ was the limiting reactant

Types al Problems.

2 Parts to Limiting/Excess Problems
A. In limiting and excess problems, you will be given the mass of all of the reactant species and you must determine which of these are in excess....and more importantly, which is the limiting reactant (or reagent) that limits the amount of the product that can form.
13. You may also have to determine how much of the excess species remains once the reaction is complete. product $\mathrm{H}_{2}(g) \leftarrow$ $\mathrm{Li}(\mathrm{s})$
ale 1 What volume of hydrogen gas, measured at STP, is produced when 8.0 g of lithium metal is reacted with 10.0 g of

$\rightarrow(A) \rightarrow 2 \mathrm{Li}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 1 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{LiOH}(a q)$
start with known amounts of reactants:
\qquad
\qquad
\qquad
mol L would require
$\mathrm{mol} \mathrm{H}, \mathrm{O}$ to completely react That means theron
insufficient__ to uso
ip all the
up all the ——Onso

| 10.0 gHzO | 1 mol hol | 1 mol Hz |
| :--- | :--- | :--- | :--- |
| | 18.0 gHO | 2 mol HzO |$=0.28 \mathrm{~mol} \mathrm{~Hz}^{2}$ L Limiting $\begin{aligned} & \text { Reactant }\end{aligned}$ produced by Li?

by $\mathrm{H}_{3} 7$
The reactant fill bodices tho lowest yeld
(amount of produce) is The reactant foal forms Me greater quantity of
product is n product is ${ }^{2}$ reagent
\qquad of the excess reactant
thus will "use upi" - Subtract the amount - Subtract in athount
used from the amount
at "exes reagent" of "excess reagent"
presem at the star!

- Check significant
fIgures (sig figs)

Convert mass of reactants $\rightarrow \begin{gathered}\text { moles of } \\ \text { product }\end{gathered} \uparrow$
What volume of $\mathrm{H}_{2}(g)$ will be produced? (amount al product formed) $(0.27=1$ product \rightarrow volume product.

$\begin{array}{l}0.277 \ldots \ldots \mathrm{~mol} \\ 0.28 \mathrm{~mol}\end{array}$	$22.4 \mathrm{LH} \mathrm{H}_{2}$
	$1 \mathrm{~mol} \mathrm{H}_{2}$

\& How much of the excess reactant is\end{aligned}\) left over? need to know how much is need up in the run with $\mathrm{H}_{2} \mathrm{O}$?

$$
\begin{aligned}
& \text { lo. mg of } \mathrm{HzO}
\end{aligned}
$$

(A)

Limiting Reactant (least amount of least amount
product formed)

We find the mass of H_{2} in excess by finding the mass of H_{2} which actually reacts based
on either. on either.
-or the mass of a product formed by the limiting reactant Then, subtract the mass of H_{2} which reacts from it's starting mass.
if 100.0 g al O_{2} reacts with 20.0 g of H_{2}, how much H_{2} is used up?

$$
\begin{aligned}
& \begin{array}{l|l|l|l}
100 . \mathrm{g}_{2} \mathrm{O}_{2} & 1 \mathrm{~mol} \mathrm{O}_{2} & 2 \mathrm{~mol} \mathrm{~Hz} & 2.0 \mathrm{gHz} \\
\hline & 32.0 \mathrm{gO} & 1 \mathrm{~mol} \mathrm{O} & 1 \mathrm{~mol} \mathrm{~Hz}
\end{array}=\frac{12.5}{2} \mathrm{~g} \mathrm{~Hz}_{2} \\
& \text { * means that } 100.0 \mathrm{~g}_{\mathrm{g}} \mathrm{O}_{2} \\
& \text { will react with (useup) } \\
& 20.0 \mathrm{~g}-12.5 \mathrm{~g}=7.5 \mathrm{~g} \mathrm{~Hz}(\mathrm{~g}) \\
& 12.5 \mathrm{y} \text { of } \mathrm{Hz} \ldots \text { so there } \\
& \text { is excess } \mathrm{Hz}_{2} \text { (leftover) }
\end{aligned}
$$

* in reactions with multiple products, pick ONE, and stick to it!
what is the LR? (what forms the least amount al product)

mol NO (based an HCl): $40.0 \mathrm{gHCl} \left\lvert\, 1$| 1 mol HCl | 1 molno | |
| :--- | :--- | :--- |
| | 36.5 gHCl | 4 HCl |\right.$: 0.274 \mathrm{molNO}$

\therefore Fell and $H C$ are in excess...but by how much?
How much of each is used up in the reaction with KNO_{3} (Limiting reactant)?
$56.8 \mathrm{~g}-52.7 \mathrm{~g}=4.1 \mathrm{~g} \mathrm{FeCl}_{2}$ in excess

Part E: Percentage Yield \& Percentage Purity

So far, we have been making the assumption that all reactions always go entirely to completion
Meaning that all of the limiting reactant has been converted into product, leaving only the excess reactant with none of the limiting reactant remaining at all.

In real life, this is not always the case. Like the tree planting example, many
reactions complete themselves only partially.
Such reactions give only a partial percentage yield, less than 100% of the
reactant are converted into products. Percentage Yield $=\frac{\text { mass product obtained }}{\text { mass product expected. }} \times 100 \%$ "Theoretical Yield"
(the terms \%yield is used to express how much of the product is actually obtained) based on the limiting reactant.
The amount of product expected (calculated using stoichiometry) is commonly referred to as the FhecretiraQ Yield.

Calculations of Yield
In any chemical reaction, the amount of product you get is called the chemical yield. The yield always differs
from the amount you expect to for:
Theoretical yield $=$ expected a mount (from mass/a mount al limiting reccktrint)
Theoretical yield =
Actual yield $=$ what is actually produced (given in the Q)

$$
\% \text { yeld }=\frac{\text { actual yield }}{\text { theoretical yield e) }} \times 100 \%
$$

Why does the actual yield differ from the theoretical yield?
There are many possible reasons. Some are acceptable and some aren't. Here are a few examples:

* Carelessness or sloppiness. Reactants improperly measured out or lost due to spills, etc. (human error)
* Product left behind in the reaction container when collected or transferred.
* Products may be contaminated. The mass of the impurity results in greater mass than expected.

Note: Water is frequently a source of error. Important to dry samples thoroughly before weighing.
NOTE: we can never make more product than expected (unless we didn't make what we thought we did!)
The actual yield $d_{\text {of }}$ the PRODUCTS should be LESS than the theoretical yield.
3 Types of \% Yield Calculations:

1. Find the percent yield, given the mass of reactant used and mass of product formed.
2. Find the mass of product formed, given the mass of reactant used and the percentage yield.
3. Find the mass of the reactant used, given the mass of product formed and the percentage yield.

Type 1 Problems: Find the percent yield, given the mass of reactant used and mass of product formed.

When 15.0 g of $\mathrm{CH}_{4(g)}$ is reacted with an excess of $\mathrm{Cl}_{2(\mathrm{~g})}$ according to the reaction:

$$
\begin{aligned}
& \text { reaction: } \\
& \begin{array}{l}
\text { actual ye } \\
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \\
\mathrm{L.R} \text {. } \mathrm{excess}_{3} \mathrm{CHI}_{(\mathrm{g})}+\mathrm{HCl}_{(\mathrm{g})} \quad \text { A total of } 29.7 \mathrm{~g} \\
\left.29.7 \mathrm{~g} \text { of } \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}\right) \text { is formed. }
\end{array} .
\end{aligned}
$$

What is the percent yield of the reaction?

> Theoretical field (based on Limiting reactant) amount limiting \rightarrow mol limiting \rightarrow molprod. \rightarrow amountproduct.
(PRACTICE *neutralization (gas formation) *
Example 2 A student carried out an experiment in which she completely reacted 45.8 g of potassium carbonate with an excess of hydrochloric acid. As a result, 46.3 g of potassium chloride were produced. What was the percentage yield of potassium chloride?
(1) Balance \qquad $\underset{\left(4.2 \mathrm{~K}_{3}\right.}{\mathrm{K}_{2} \mathrm{CO}_{3}}+\underset{(\text { excess) }}{2 \mathrm{HCl}} \rightarrow \frac{2 \mathrm{KCl}}{46.3 \mathrm{~g}}+$ Ho $\mathrm{O}+$ \qquad CO_{2}
(2) Theoretical massol LR \rightarrow mol L.R \rightarrow mol Product \rightarrow mass product.

Yield \quad| $45.8 \mathrm{gKal}_{3}$ | $1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3}$ | 2 mol KCl | 74.6 g KCl |
| :--- | :--- | :--- | :--- |
| | $138.2 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ | 1 mol KaCl | 1 mol KCl |$=\begin{array}{ll}49.4 \mathrm{~g} \mathrm{KCl}\end{array}$

(3) \% Veld $=\frac{\text { actual }}{\text { Theoretical }} \times 100 \%=\frac{46.3 \mathrm{~g} \mathrm{KCl}}{49.4 \mathrm{~g} \mathrm{KCl}} \times 100 \%=93.6 \%$

Type 2 Problems: Find the mass of product formed, given the mass of reactant used and the percentage yield.
Example 3 When a second student carried out the same reaction as above, 52.7 g of potassium chloride was obtained. Calculate the percentage yield. What most likely explains the result?

$$
\text { \% yield }=\frac{\text { actual }}{\text { theoretical }} \times 100=\frac{52.7 \mathrm{~g} \frac{\mathrm{KCl}}{49.4 \mathrm{~g} \mathrm{KCl}} \times 100 \%=1077}{1.0}
$$

\therefore mare product formed (7%) than expected (ar posside). It is likely that the large mass $(52.75$) is due to a wet (includes 120) or contaminated product.
| PRACTICE
Example 4 If the reaction has a 76.0% yield, what mass of $\mathrm{K}_{2} \mathrm{CO}_{3(s)}$ is produced when $1.50{\mathrm{~g} \text { of } \mathrm{KO}_{2(s)} \text { is }}^{\text {i }}$ reacted with an excess of $\mathrm{CO}_{2(g)}$ according to the reaction:

limiting
(2) Theoretical amon $\angle R \rightarrow$ mol $L R \rightarrow$ mols prod. \rightarrow mass prod.

(3) If $\%$ yeld $=\frac{\text { actual }}{\text { theoretical }} \times 100$ then actual yid: (\% yield) (Thererticd)

$$
=(0.760)(1.465)
$$

actual yid $=1.1 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$

Type 3 Problems: Find the mass of the reactant used, given the mass of product formed and the percentage yield
Examples. *Recall: stoichiometry ratios assume 100% yield
If the reaction has a 580% yield what mass of $\mathrm{CuO}(\mathrm{s})$ is required to make 100 g of $\mathrm{Cu}(\mathrm{s})$ according to the reaction

(). Basedon stowichicmery. (100%) yield, what massol CuO is needed to theoretically produce 10.0 g of cm ?
(2) This mass is based on 100% yield.... but we know the \% yeld is only 58.0%, so we must compensate:

From this equivalence statement, we get the conversion factors:

Example 1 A sample of potassium carbonate is 58.5% pure. What mass of sample contains 87.3 g of potassium carbonate? What mass of potassium carbonate is in 295.3 g of the sample?

Chem 11 Chemical Reactions Review Assignment- Answers

Please let me know if you have any questions or think you've found an error in the key. Study well!

1. a) $\mathrm{C}_{8} \mathrm{H}_{16}+12 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \quad$ (hard to balance using "the method" - sorry! Please feel free to omit this one)
c) $2 \mathrm{Si}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{SiO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
d) $4 \mathrm{NaPb}+4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \rightarrow \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}+3 \mathrm{~Pb}+4 \mathrm{NaCl}$
e) $3 \mathrm{LiAlH}_{4}+4 \mathrm{BF}_{3} \rightarrow 3 \mathrm{LiF}+3 \mathrm{AlF}_{3}+2 \mathrm{~B}_{2} \mathrm{H}_{6}$
f) $2 \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NH}+46 \mathrm{O}_{2} \rightarrow 30 \mathrm{CO}_{2}+32 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
2. a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
b) $2 \mathrm{CaO} \rightarrow 2 \mathrm{Ca}+\mathrm{O}_{2}$
c) $\mathrm{Mg}+\mathrm{CuSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Cu}$
d) $\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
e) $2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{MgS} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}+3 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
f) $2 \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{SH}+35 \mathrm{O}_{2} \rightarrow 22 \mathrm{CO}_{2}+22 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$

Synthesis
Decomposition
Single replacement
Neutralization
Double replacement
Hydrocarbon combustion
3. $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{ZnS}(\mathrm{s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
4. a) Acid: A substances that can release a proton when dissolve to form aqueous solutions.
b) Base: An ionic substance containing a hydroxide group. (e.g. $\mathrm{NaOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}$, etc)
c) Salt: An ionic substance that is neither an acid nor a base.
d) Activation Energy: The amount of energy needed to start a reaction.
e) Enthalpy: the amount of energy stored in a chemical system.
f) Exothermic Reaction: a reaction in which the amount of energy needed to break the bonds of the reactants is less than the amount of energy released when product bonds form.
5. a) The energy term appears on the products side.
b) The reactant enthalpy is higher than the products; the axes must be properly labeled and (unlike in the text) I expect you to draw the activation energy correctly.
6. The change in enthalpy represents the difference between the enthalpy of products (i.e. final conditions) and the enthalpy of the reactants (i.e. initial conditions). This difference is positive in endothermic reactions because there is more stored energy in the system after the reaction completes while it is negative in exothermic reactions due to less heat being stored in the system after the reaction is over.
7. Endothermic reactions draw energy in from the surroundings to break the bonds of the reactants but they do not release as much energy from the newly formed product bonds. The net result is that more energy must be taken in than is returned to the surroundings.
8. Exothermic enthalpy changes are negative due to the final enthalpy being less than the initial enthalpy. $\left(\Delta H=H_{f}-H_{i}\right)$.
9. Sulfur dioxide; SO_{2} dissolves in the atmosphere to produce acid rain which the damages aquatic ecosystems, food crops and numerous structures. More energy is released when product bonds form than is consumed in breaking the reactant bonds.
10. Note: The question should refer to 2 e) and not to 2 b). The reaction is taking place in the aqueous phase. This means that while the reactants are part of the system, the water in which they are dissolved is not part of the system. Ask about this if you are unsure...

Chemistry 11 Chemical Reactions Review Assignment

If you want to earn full marks on each question, then you must show all of your mental steps wherever possible.

1. Balance the following reaction equations, taking care to show your balancing steps.
a)
$\mathrm{C}_{8} \mathrm{H}_{16}+$
$\mathrm{O}_{2} \quad \rightarrow$
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
b)
$\mathrm{Al}+$
$\mathrm{CuS} \rightarrow$
$\mathrm{Al}_{2} \mathrm{~S}_{3}+\mathrm{Cu}$
c)
$\mathrm{Si}_{4} \mathrm{H}_{10}+$
$\mathrm{O}_{2} \quad \rightarrow$
$\mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O}$
d)
$\mathrm{NaPb}+$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \longrightarrow$
$\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}+$
$\mathrm{Pb}+\mathrm{NaCl}$
e)
$\mathrm{LiAlH}_{4}+\quad \mathrm{BF}_{3} \quad \rightarrow$
$\mathrm{LiF}+\mathrm{AlF}_{3}+\quad \mathrm{B}_{2} \mathrm{H}_{6}$
f)
$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NH}+$
$\mathrm{O}_{2} \quad \rightarrow$
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
2. Complete, balance and classify the following chemical reaction equations:
a) $\quad \mathrm{N}_{2}+\mathrm{H}_{2} \quad \rightarrow$

Type: \qquad
b) $\mathrm{CaO} \quad \rightarrow$

Type: \qquad
c) $\quad \mathrm{Mg}+\mathrm{CuSO}_{4} \quad \rightarrow$

Type: \qquad
d) $\quad \mathrm{H}_{3} \mathrm{PO}_{4}+\quad \mathrm{KOH} \rightarrow$

Type: \qquad
e) $\quad \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\quad \operatorname{MgS}(\mathrm{aq}) \quad \rightarrow$

Type: \qquad
f) $\quad \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{SH}+\mathrm{O}_{2} \quad \rightarrow$

Type: \qquad
3. Sodium sulfide and zinc nitrate solutions react when mixed. The product containing the sulfide group forms a precipitate. Write the balanced reaction equation and include the phases.
4. Carefully define the following terms:
a) Acid
b) Base
c) Salt
d) Activation Energy \qquad
\qquad
e) Enthalpy \qquad
\qquad
f) Exothermic Reaction \qquad
\qquad
\qquad
\qquad
5. Consider the reaction: $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) ; \Delta \mathrm{H}=-848 \mathrm{~kJ} / \mathrm{mol}$.
a) Rewrite the reaction with the energy term as a reactant or product (whichever is appropriate).
b) Complete and fully label the following enthalpy versus reaction progress diagram.

6. What does the change in enthalpy, $\Delta \mathrm{H}$, represent? Explain.
7. Clearly explain why an endothermic reaction absorbs energy from the surroundings (describe the energy changes in your answer).
\qquad
\qquad
\qquad
\qquad
8. Why is the enthalpy change for an exothermic reaction always negative? You may refer to the potential energy (enthalpy) graph but be sure to answer using words.
\qquad
\qquad
\qquad
\qquad
9. The combustion of organic molecules that contain sulfur produces this gas: \qquad
What problem in the environment does this gas create? \qquad
\qquad
\qquad

Just for fun! Complete the crossword puzzle to review vocabulary. Across

1 HOFBrINCl reminds us that these elements are \qquad molecules. (8)
7 Speeds up a chemical reaction without being consumed. (8)
8 The part of the universe immediately outside of a system. (12)
9 Sulfur is an \qquad molecule. (9)

10 The chemicals whose bonds must be broken for a reaction to occur. (9)
11 A part of the universe being studied where something can enter or leave. (10)

Down

2 An experimentally observed law that states what is unchanged in a special set of circumstances. (15)

3 The chemicals whose bonds form as a chemical reaction occurs. (8)
4 Phosphorus is a \qquad molecule. (10)
5 A part of the universe being studied where nothing can enter or leave. (12)

6 Dissolved in water (7)

Chemistry 11 Stoichiometry Review Assignment

Name:
Date:
Block: \qquad

Answer the following practice questions on a separate page

Define the following terms:

1. Stoichiometry: quantitative relationships among substances as they participate in chemical reactions
2. Stoichiometric ratio: the molar ratio of substances in a chemical reaction (coefficients in a balanced chemical equation)
3. Limiting reactant the reactant in a chemical reaction is the substance that is totally consumed when the chemical reaction is complete. The amount of product formed is limited by this reagent, since the reaction cannot continue without it.
4. Excess reactant In a chemical reaction, reactants that are not use up when the reaction is finished are called excess reagents.
5. Percent yield is calculated to be the experimental yield divided by theoretical yield multiplied by 100%.

(Mole-Mole Conversions)

6. The combustion of the organic fuel, decane, is outlined in the chemical equation below. You must balance the equation in order to answer the subsequent questions a-c.

$$
ـ^{2} _\mathrm{C}_{10} \mathrm{H}_{22}+__{-}^{31} \mathrm{O}_{2} \longrightarrow-{ }^{20} _\mathrm{CO}_{2}+_{ }^{22} _\mathrm{H}_{2} \mathrm{O}
$$

a. How many moles of CO_{2} are produced if 5.0 moles of $\mathrm{C}_{10} \mathrm{H}_{22}$ react with an excess of O_{2} ?
b. How many moles of O_{2} react with 0.75 moles of $\mathrm{C}_{10} \mathrm{H}_{22}$?
c. How many moles of O_{2} would be required to produce 4.0 moles of $\mathrm{H}_{2} \mathrm{O}$?

7. Use the following equation to solve the problems below:

$$
3 \mathrm{SiO}_{2}+4 \mathrm{Al} \longrightarrow 3 \mathrm{Si}+2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

a. If 6.0 moles of SiO_{2} react, how many moles of:
i. Al react?
ii. Si are produced?
iii. $\mathrm{Al}_{2} \mathrm{O}_{3}$ are produced?
b. If 2.5 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are produced, how many moles of:
i. Al react?
ii. SiO_{2} react?

ii)

iii) \begin{tabular}{l|l}
6.0 mol SiO \& $2 \mathrm{~m}, \mathrm{Al}_{3} \mathrm{O}_{3}$

\hline \& $3 \mathrm{~m} 1 \mathrm{S:O}$

,

$4.0 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
\end{tabular}

b) i) $2.5 \mathrm{~m} 1 \mathrm{AQ}_{3} \mathrm{O}_{3} / \frac{4 \mathrm{~m} 1 \mathrm{Al}}{2 \mathrm{ml} \mathrm{l}_{3} \mathrm{O}_{3}}=\begin{aligned} & 5.0 \mathrm{~mol} \mathrm{Al}\end{aligned}$

(Mole-Mass / Mass-Mole Conversions)

8. $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
a) If 15.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was produced, how many moles of O_{2} were required?

$15.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$	$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$	$2 \mathrm{~mol} \mathrm{O}_{2}$
	$92.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$	$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$

b) If 4.0×10^{-3} moles of oxygen reacted, how many grams of N_{2} were needed?

$4.0 \times 10^{-3} \mathrm{~mol} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{~N}_{2}$	$28.0 \mathrm{~g} \mathrm{~N}_{2}$
	$2 \mathrm{~mol} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{~N}_{2}$

9. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ How many moles of Cu are needed to react with 3.50 g of AgNO_{3} ?

$3.50 \mathrm{~g} \mathrm{AgNO}_{3}$	$1 \mathrm{~mol} \mathrm{AgNO}_{3}$	1 mol Cu
	$169.9 \mathrm{~g} \mathrm{AgNO}_{3}$	$2 \mathrm{~mol} \mathrm{AgNO}_{3}$

10. Mercury (II) oxide decomposes into mercury and oxygen gas.
a) Write and balance the equation.

$$
2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}
$$

b) How many moles of mercury (II) oxide are needed to produce 125 g of oxygen?

$125 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	2 mol HgO
	$32.0 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$

c) How many grams of mercury are produced if 24.5 moles of mercury (II) oxide decomposes?

24.5 mol HgO	2 mol Hg	200.6 g Hg
	2 mol HgO	1 mol Hg

(Mass-Mass Conversions)

11. $\mathrm{Li}_{3} \mathrm{~N}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{LiOH}_{(\mathrm{aq})}$
a. What mass of lithium hydroxide are produced when 0.38 g of lithium nitride react?

0.38 g Li N	1 mol Li N	3 mol LiOH	23.9 g LiOH
	34.7 g Li N	1 mol Li N	1 mol LiOH

b. How many grams of lithium nitride would react with 4.05 g of $\mathrm{H}_{2} \mathrm{O}$?

$4.05 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{Li}_{3} \mathrm{~N}$	$34.7 \mathrm{~g} \mathrm{Li}{ }_{3} \mathrm{~N}$
	$18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	$3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	1 mol Li
3			

12. In the combustion of 54.50 g of butane $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$, how many grams of CO_{2} are produced? Write and balance the equation before solving.

$$
2 \mathrm{C}_{4} \mathrm{H}_{6}+11 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$54.50 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{6}$	$1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{6}$	$8 \mathrm{~mol} \mathrm{CO}_{2}$	$44.0 \mathrm{~g} \mathrm{CO}_{2}$
	$54.0 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{6}$	$2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{6}$	$1 \mathrm{~mol} \mathrm{CO}_{2}$

13. In the following unbalanced equation,
$\underline{4} \mathrm{FeS}_{2}+\underline{11 \mathrm{O}_{2}} \rightarrow \underline{2} \mathrm{Fe}_{2} \mathrm{O}_{3}+\underline{8} \mathrm{SO}_{2}$
a) How many grams of iron (IV) sulphide are used when $9.0 \mathrm{~g}^{\text {of } \mathrm{O}_{2} \text { react? }}$

$9.0 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$4 \mathrm{~mol} \mathrm{FeS}_{2}$	$120.0 \mathrm{~g} \mathrm{FeS}_{2}$
	$32.0 \mathrm{~g} \mathrm{O}_{2}$	$11 \mathrm{~mol} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{FeS}_{2}$

b) What is the mass of iron (III) oxide produced when 25.0 g of iron (IV) sulphide are used?

$25.0 \mathrm{~g} \mathrm{FeS}_{2}$	$1 \mathrm{~mol} \mathrm{FeS}_{2}$	$2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$	$159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
	$120.0 \mathrm{~g} \mathrm{FeS}_{2}$	$4 \mathrm{~mol} \mathrm{FeS}_{2}$	$1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

14. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

How many grams of silver are produced when 36.92 g of copper react?

36.92 g Cu	1 mol Cu	2 mol Ag	107.9 g Ag
	63.5 g Cu	1 mol Cu	1 mol Ag

15. __ $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \ldots \mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{CaSO}_{4}$

Balance and answer the following questions.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\underline{3} \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \underline{2} \mathrm{Al}(\mathrm{OH})_{3}+\underline{3} \mathrm{CaSO}_{4}$
a. What mass of aluminum (III) hydroxide are produced if 165.7 g of aluminum (III) sulfate react?

$165.7 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$2 \mathrm{~mol} \mathrm{Al}^{(\mathrm{OH})_{3}}$	$78.0 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$
	$342.3 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	

b. How many grams of calcium hydroxide are needed to form 6.35 g of calcium sulphate?

$6.35 \mathrm{~g} \mathrm{CaSO}_{4}$	$1 \mathrm{~mol} \mathrm{CaSO}_{4}$	$3{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \quad 74.1 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$	
	$136.2 \mathrm{~g} \mathrm{CaSO}_{4}$	$3 \mathrm{~mol} \mathrm{CaSO}_{4}$	$1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$

(Mass- Volume/ Volume-Volume Conversions)

16. Given the following equation:

$$
3 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NO}_{(\mathrm{g})} \text { Assume STP }
$$

a. What mass of water is required to react with 15.5 L of Nitrogen dioxide?
b. What volume of Nitrogen monoxide would be produced from 100.0 g of water?
c. If 42.0 L of $\mathrm{NO}_{(\mathrm{g})}$ is produced, what volume of $\mathrm{NO}_{2(\mathrm{~g})}$ reacted?

c.

42.0 L NO	1 mol NO	3 mol NO	$22.4 \mathrm{LNO}_{2}$		
	22.4 LNO	1 mol NO	1 mol NO	$=$	126 LNO
:---					

17. When Magnesium reacts with Nitric Acid, Hydrogen gas and aqueous Magnesium nitrate are formed. What volume of Hydrogen gas will be produced if 40.0 g of Magnesium is reacted with an excess of Nitric Acid?

$$
\begin{array}{c|c|c|c}
40.0 \mathrm{~g} \mathrm{Mg} & 1 \mathrm{~mol} \mathrm{Mg} & 1 \mathrm{~mol} \mathrm{H}_{\mathrm{L}} & 22.4 \mathrm{LHz} \\
\hline & 243 \mathrm{~g} \mathrm{Mg} & 1 \mathrm{~mol} \mathrm{Ng}_{\mathrm{g}} & 1 \mathrm{~mol} \mathrm{H}
\end{array}: \begin{aligned}
& 36.9 \mathrm{LH}_{2}
\end{aligned}
$$

18. The corrosion (rusting) of iron is represented as follows: (at STP)

$$
3 \mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{Fe}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

a. What volume of Oxygen gas would be required to produce 16.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
b. What mass of Iron would be required to react with 10.0 L of O_{2} gas?
19. Mercury (II) oxide decomposes when heated to produce liquid Mercury and Oxygen gas. What mass of Mercury (II) oxide would be required to produce 30.5 L of Oxygen gas? (Assume STP)

$$
2 \mathrm{HgO}^{\longrightarrow} \longrightarrow 2 \mathrm{H}_{(3)}+\mathrm{O}_{2(3)}
$$

20 . How many mL of 2.00 M HNO3 is needed to consume 5.4 g of aluminum?
$2 \mathrm{Al}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{HNO}_{3}\right)_{3}+3 \mathrm{H}_{2}$

5.4 g Al	1 mol Al	$6 \mathrm{~mol} \mathrm{HNO}_{3}$
	27.0 g Al	$2 \mathrm{~mol} \mathrm{Al}^{2}$

$\left[\mathrm{HNO}_{3}\right]=\#$ mols \div volume \quad So, Volume $=$ mols $\div\left[\mathrm{HNO}_{3}\right]=0.60 \mathrm{~mol} \div 2 \mathrm{M}=0.3 \mathrm{~L}(\times 1000)=\mathbf{3 . 0} \times \mathbf{1 0} \mathbf{0} \mathbf{~ m L} \cdot \mathbf{H N O}_{3}$
21. 20 mL of HCl is needed to consume 2.8 g Fe . What is the concentration of HCl ?

2.8 g Fe	1 mol Fe	6 mol HCl	
	55.8 g Fe	2 mol Fe	$=0.15 \mathrm{~mol} \mathrm{HCl}$

$$
[\mathrm{HCl}]=\mathrm{n} \div \mathrm{V}=0.15 \mathrm{~mol} \mathrm{HCl} \div 0.02 \mathrm{~L}=7.5 \mathrm{M} \mathrm{HCl}
$$

22. What mass of copper will react with 10.0 mL of 12.0 M nitric acid?

$$
\begin{aligned}
& \mathrm{Cu}+{ }_{-} 4 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{-} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+{ }_{-}{ }_{-} \mathrm{NO}_{2}+{ }_{-}{ }_{-} \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{HNO}_{3}\right]=\# \text { mols } \div \text { volume } \quad \text { So mols } \mathrm{HNO}_{3}=12.0 \mathrm{M} \times 0.01 \mathrm{~L}=0.12 \mathrm{~mol} \mathrm{HNO}_{3}} \\
& \begin{array}{l|l|l|l}
0.12 \mathrm{~mol} \mathrm{HNO}_{3} & 1 \mathrm{~mol} \mathrm{Cu} & 63.5 \mathrm{~g} \mathrm{Cu} & \\
\hline & 4 \mathrm{~mol} \mathrm{HNO} & 1 \mathrm{~mol} \mathrm{Cu} & =1.91 \mathrm{~g} \mathrm{Cu}
\end{array}
\end{aligned}
$$

Name:

Block: \qquad Date: \qquad
Chemistry 11 Limiting Reagents and Percent Yield Key Assignment

1. O_{2} is limiting.
2. $\mathrm{Mg}(\mathrm{OH})_{2}$ is limiting.
3. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is limiting.
4. NaCl is in excess.
5. 12 g of CrCl_{3}
6. $15.5 \mathrm{~g} \mathrm{SO}_{3}$
7. 44.2 g Fe
8. $27.3 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$
9. 22.9 g NaCl
10. a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{PbI}_{2}$
b) $8.51 \mathrm{~g} \mathrm{NaNO}_{3}$
c) NaI
d) $8.4 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ would be left over.
11. 42% yield
12. 49.1% yield
13. 81.6% yield
14. a) $20.00 \mathrm{~g} \mathrm{FeCl}_{2}$
b) 20.0% yield
15. a) $22.2 \mathrm{~g} \mathrm{CS}_{2}$
b) $2.1 \mathrm{~g} \mathrm{SO}_{2}$ left over.
16. $0.279 \mathrm{~g} \mathrm{BaBr}_{2}$
17. a) $21.1 \mathrm{~g} \mathrm{SiF}_{4}$
b) 8.03 g left unused.
c) 34.2% yield

REVIEW: Limiting Reagents and Percent Yield

Answer all questions on separate paper and report all answers to the correct number of sig \square figs.

1. Identify the limiting reactant when $1.22 \mathrm{~g}^{\text {of }} \mathrm{O}_{2}$ reacts with 1.05 g of H_{2} to produce water.
2. Identify the limiting reactant when 5.87 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ reacts with 12.84 g of HCl to form MgCl_{2} and water.
3. Identify the limiting reactant when 6.33 g of sulphuric acid reacts with 5.92 g of sodium hydroxide to produce sodium sulphate and water.
4. Identify the reactant in excess if 6.25 g of silver nitrate reacts with 4.12 g of sodium chloride to form sodium nitrate and silver chloride.
5. If 4.1 g of Cr is heated with 9.3 g of Cl_{2} what mass of CrCl_{3} will be produced?
6. What mass of sulphur trioxide is produced when 12.4 g of sulphur dioxide is reacted with 3.45 g of oxygen gas?
7. If 21.4 g of aluminum is reacted with 91.3 g of iron (III) oxide, the products will be aluminum oxide and iron. What mass of iron will be produced?
8. If 41.6 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ reacts with 20.8 g of $\mathrm{N}_{2} \mathrm{H}_{4}$, the products will be nitrogen gas and water. What mass of nitrogen will be produced?
9. What mass of NaCl will be produced by the reaction of 58.7 g of NaI with $29.4 \mathrm{~g}_{\mathrm{g}}$ of Cl_{2} ?
10. a. Write the balanced equation for the reaction of lead (II) nitrate with sodium iodide to form sodium nitrate and lead (II) iodide:
b. If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of sodium nitrate can be formed?
c. What is the limiting reagent in the reaction?
d. How much of the excess reagent will be left over from the reaction?
11. You calculate that using a certain amount of beryllium and hydrochloric acid you can produce 10.7 g of beryllium chloride. You perform the experiment and only collect 4.5 g . What was the percent yield for the reaction?
12. Determine the percent yield for the reaction between 45.9 g of NaBr and excess chlorine gas to produce 12.8 g of NaCl and an unknown quantity of bromine gas.
13. Determine the percent yield for the reaction between 44.5 g of zinc sulphide and 13.3 g of oxygen, if 18.4 g of zinc oxide is recovered with an unknown amount of sulphur dioxide.
14. A reaction was carried out according to the following equation:

$$
\mathrm{FeBr}_{2}+2 \mathrm{KCl} \rightarrow \mathrm{FeCl}_{2}+2 \mathrm{KBr}
$$

a. What is the theoretical yield of iron (II) chloride if 34.00 grams of iron (II) bromide was used in the reaction with excess potassium chloride?
b. What is the percent yield of iron (II) chloride if the actual yield is 4.00 grams?
15. a. What mass of $\mathrm{CS}_{2(s)}$ is produced when $17.5 \mathrm{~g}^{\text {of }} \mathrm{C}_{(s)}$ are reacted with 39.5 g of $\mathrm{SO}_{2(\mathrm{~g})}$ according to the equation: $5 \mathrm{C}_{(s)}+2 \mathrm{SO}_{2(g)} \rightarrow \mathrm{CS}_{2(s)}+4 \mathrm{CO}_{(g)}$?
b. What mass of the excess reactant will be left over?
16. If 0.250 g of $\mathrm{Ba}(\mathrm{OH})_{2(s)}$ is mixed with 15.0 mL of $0.125 \mathrm{M} \mathrm{HBr}_{(a q)}$, what mass of $\mathrm{BaBr}_{2(a q)}$ can be formed?

$$
\mathrm{Ba}(\mathrm{OH})_{2(s)}+2 \mathrm{HBr}_{(a q)} \rightarrow \mathrm{BaBr}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

17. The reaction $\mathrm{SiO}_{2(s)}+4 \mathrm{HF}_{(g)} \rightarrow \mathrm{SiF}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$ produces 2.50 g of $\mathrm{H}_{2} \mathrm{O}_{(g)}$ when 12.20 g of $\mathrm{SiO}_{2(s)}$ is treated with a small excess of $\mathrm{HF}_{(\mathrm{g})}$.
a. What mass of $\mathrm{SiF}_{4(\mathrm{~g})}$ is formed?
b. What mass of $\mathrm{SiO}_{2(s)}$ is left unreacted if only 2.50 g of $\mathrm{H}_{2} \mathrm{O}$ is formed?
c. What is the percent yield of the $\mathrm{H}_{2} \mathrm{O}_{(g)}$?
