

UNIT4:BIOLO9Y

Cell-fie

BOOK 1: CELLS & DNA

name:

Science 9 Assignment Log

Date	Assignment/Worksheet/Lab	Completed?

Concepts to Review	Facts to Remember

Sustainability + Reproduction

	_refers to the ability of the environment and the living things it supports		
to endure into the	Imagine for a moment that all living things on Earth		
are no longer able to reproduce	-to make more of their own kind. Picture, for example, the last bear		
eating the last berry on the last	eating the last berry on the last berry bush. Or catching the last trout that moments earlier snapped up		
the last crayfish. Imagine this same scenario for			
	In this grim <i>"thought experiment"</i> , it would not be long before all life		
on Earth starved and came to an end.			
	is critical as it ensures that organisms have a source of nutrients and		

energy to ______.

Introduction - How Many Cells do Humans Have?

• All living things are made up of _____, which are the _____ unit in all organisms.

- In fact, you are made up of _____ (_____ •
 - To give that number of context, _____

) cells.

The Importance of Cell Division

- All cells come from _____ cells. .
- Our cells are ______ and being ______.

- In total we lose between ______ cells every day. But our cells divide to produce 300 billion ______.
- We make 100 million ______ every minute.

By the time you finish this sentence, ______ of your cells have died.

- And an entirely new layer of skin every ______.
 - Some cells only divide under _____:
 o _____ only divide if a piece has been removed.
 This allows for ______ as the missing tissue will
 grow back in the donor and the transplanted piece will grow new cells in the
 recipient.
- Some cells don't divide:

•

•

•

- _____ This is why people with brain or spinal damage do not naturally recover
- We need cell division for:
 - o ______ of individual organisms
 o ______ damaged and dead cells
 o ______ in unicellular organisms

Amoeba Sisters: Introduction to Cells: The Grand Cell Tour https://www.youtube.com/watch?v=8llzKri08kk

AMOEBA SISTERS: VIDEO RECAP

Amoeba Sisters Video Recap: Introduction to Cells

Directions: For each statement, write a "P" if it best applies to **prokaryotes only**, "E" if it best applies to **eukaryotes only**, and "both" if it applies to **both prokaryotes and eukaryotes**.

13. The **cell theory** makes several fascinating statements about cells! What are three statements mentioned in the video that are included in the cell theory?

AMOEBA SISTERS: VIDEO RECAP

INTRODUCTION TO CELLS

A Tour Inside the Cell!

Let's do a recap of the structures discovered inside the cell after the video tour! Fill in the below chart to help you organize what was visited! Remember there are more functions and structures that you can discover online.

Structure or	Makes Me Think of	Function(s):	*Type of Cell?
Organelle on the			*Is it in both prokaryotes and
Tour:	(provide an illustration or analogy!)		eukaryotes? Or just eukaryotes?
Cell Membrane	14.	15.	16.
Cytoplasm	17.	18.	19.
-,			
Ribosome	20.	21.	22.
Nucleus	23.	24.	25.
Endoplosmic	26		28
Reticulum (Rough	28.	27.	28.
and Smooth)			
Golgi apparatus	29.	30.	31.
Mitochondria	32.	33.	Eukaryote Cells (ín both
(Singular:			animal and plant cells)
Mitochondrion)			
Cell Wall	34.	35.	36.
Chloroplast	37.	38.	39.
Vacuole	40.	41.	42.

Cell Structures and Organelles: What important cell structures need to be taken into consideration

during _____?

Name	Picture	Function
		 of cells have a cell membrane The cell membrane creates a around that cell It will allow certain things to through, but not others () Only found in Give the plants some so when cells are full of the plant can stand up straight (cells go together like building blocks) It is (has holes) so materials
		 can go through it Directs all cell's (including cell division) of the cell It the nucleus Allows material to or or the nucleus () Site for production and assembly of
		 Located inside the
		Contained in the They are made of special (think:) These are found only in cells and are active during
	Large subunit	Tiny organelles in the which make

Large subunit Small subunit	- They are either or attached to the
	and modifies materials produced by the cell that need to be out of the cell
	 Both are used for and are smaller than
	 Special type of that contains Used for digestion of complex molecules, so their parts can be
	 SMOOTH produces and steroid hormones like ROUGH (its rough because it is covered in) is where are mass produced
	 Where food and the you breathe in come together to make that your cells can use The of the cell
	 Only found in cells This is where occurs (chloroplasts use energy from the to)

Eukaryotic Cell Structure: Organelles in Animal & Plant Cells

Why are organelles important and how are plants and animals different?

Why?

The cell is the basic unit and building block of all living things. Organisms can be unicellular or multicellular. Large multicellular organisms have many cells, and many types of cell. In order to survive both unicellular and multicellular organisms rely on the cell to perform all the necessary life functions. To do this certain functions must be separated within different areas of the cell.

A cell is often compared to a factory or other large structured organization, to help us understand how different parts of the cell perform different tasks.

Model 1: Animal Cell and Organelles

Part of factory	Cell organelle
Control Room (E)	Nucleus
Factory Manager	DNA/Chromosomes
Assembly line (B)	Endoplasmic reticulum (ER)
Assembly line workers (F)	Ribosomes
Janitor (A)	Lysosomes
Generator (H)	Mitochondria
Packing Line (C)	Golgi Body
Factory Floor (G)	Cytoplasm
Shipping department	Vesicles
Warehouse	Vacuole
Loading dock	Pores/gated channels
Security Fence (D)	Cell membrane

- 1. Using the letters from the table above, label the cell diagram with the organelle names.
- 2. Which cell organelle controls the activities of the entire cell?
- 3. In a factory, where would you expect to find the manager?
- 4. In a cell what substance is analogous to a factory manager and where would it be found?
- 5. Which organelle would generate energy to power cellular activities?
- 6. Which organelle would be responsible for assembling cell products?
- 7. Once these products have been assembled, to which organelle would they go next?
- 8. What container might the cellular products be placed in to?

STOP

STOP

9. Starting with instructions from the factory manager (DNA/Chromosomes), create a flow chart to show how a product is produced and shipped from a cell. All parts of the cell from the table above must be used in your flow chart.

Model 2: Animal Cells with organelle(s) removed

- 10. Which cell is not missing any organelles?
- 11. What organelle in Cell 2 is missing?
- 12. Using grammatically correct sentences, describe why Cell 2 would not function normally.
- 13. Which two cells will have difficulty containing and getting rid of wastes within the cell? Why?
- 14. Cell 1 is missing one organelle. List as many reasons as possible why Cell 1 will not survive.
- 15. Cell 7 & Cell 4 will not be able to synthesize a major bio-molecule. What molecule is this?

Model 3: Animal vs. Plant Cells

16. Do both of these cells have a nucleus?

- 17. Do both of these cells have mitochondria?
- 18. Describe 3-5 differences between the plant and animal cells. Circle or locate each of these differences on the diagram above.

Read This!

Plant cells have these three organelles not found in animal cells. They include Cell Wall, Large Central Vacuole, and Plastids (including Chloroplasts).

19. Complete the table below using the three plant organelles.

Organelle	Function
	Fluid filled organelle stores water, enzymes and waste products.
	Size of this organelle can change.
	Supports and protects the cell.
	Some store food or pigments; one type transfers energy from
	light to organic compounds

- 20. Label each of these three organelles on the plant cell diagram.
- 21. Individually, in one grammatically correct sentence, describe why it is necessary for plants to have chloroplasts.
- 22. Have everyone read their answer to question 15. As a group, rewrite the answer combining all of your answers.
- 23. The central vacuole stores water. What would happen to the size of the central vacuole if a plant does not have enough water?
- 24. Describe the appearance of the vacuole in a well-watered plant. What effect would this have on the cell wall of the plant?
- 25. Using your response to question 18, construct an explanation for why a plant has both a rigid cell wall and a cellular membrane.

Extension Questions

Read This!

<u>All</u> cells undergo cellular respiration for the production of energy. Energy is necessary for all metabolic activity within the cell.

The formula for Cellular Respiration is $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + energy/ATP$

Plants carry out photosynthesis for the production of glucose. The glucose then becomes the energy source for cellular respiration.

The formul	a for photosynthesis is
	Sun's
	energy
$6CO_2 + 6H_2O$	$ C_6 H_{12} O_6 + 6 O_2$

26. In what organelle does cellular respiration occur? Do plants and animals both have that structure?

- 27. In what organelle does photosynthesis occur? Do plants and animals both have that structure?
- 28. Using the equations above, explain the relationship between mitochondria and chloroplasts.

- 29. Plants have both mitochondria and chloroplasts so they can produce their own source of glucose to fuel cellular respiration, whereas animal cells have only mitochondria. If an animal eats only meat what would be their source of glucose?
- 30. Where in the human body would you find cells with more mitochondria? Why?

PRACTICE

I. Some human cells, such as muscle cells, have more mitochondria. Why would these cells need more mitochondria?

2. When an animal eats, food is stored in the stomach for a period of time. What organelle acts as temporary storage for a cell?

3. Why is it important that the cell membrane is semi-permeable?

Cell Membrane	Name:	Date:
Thin layer that the cell. It provides and	Cells are the ba	NT CELLS sic building blocks of all living things.
meaning it only lets certain substances in or		
out of the cell.		Cell Wall
		Cell walls are only found in cells. They provide extra
Golgi Body		for plants.
Packages and	. \	
into		(Endoplasmic Reticulum (Smooth)
for transport of the	r · MA	Makes (tats) and modifies
cell.	$\int O O O$	• IT then these
		Tha ter lais Throughout The cell.
	Ch Ch	Nucleus & Nucleolus
		The nucleus is the
		of the cell. It directs many of the
		of the cell. It also holds
		the cells
		The nucleolus is inside of the
		(N N It aids in the production of

animal cells but is usually much larger in plant cells? Why?

PRACTICE

What organelle does the sugar then need to go to and why?

both a cell membrane and a cell wall?

Part 1: Colouring and Labelling Animal and Plant Cells

- **Title** each cell given as either an animal or a plant cell
- Color and label the organelles on both the animal and plant cells provided

Part 2: Organelle Function

Homework ()

• Underneath each cell, write the function of each organelle listed **in your own words**

- a. Vesicle:
- b. Lysosomes:
- c. Golgi Body:
- d. Cytoplasm: _____
- e. Nucleus:
- f. Cell Membrane:
- g. Mitochondria: ____
- h. Smooth Endoplasmic Reticulum:
- i. Centriole: _____

a.	Ribosomes:
b.	Nucleus:
c.	Nucleolus:
d.	Nuclear Membrane:
e.	Rough Endoplasmic Reticulum:
f.	Vacuole:
g.	Cell Wall:
h.	Chloroplast:

Animal vs Plant Cells

Animal Cells HAVE

Lots of ______

- Animal Cells DO NOT HAVE
 - •
 - •

Plant Cells HAVE

- _____
- •
- •
- Few _____

Plant Cells DO NOT HAVE

......

Reproduction Transfers GENETIC INFORMATION from Parents to Offspring

Every species has its own strategies for _____.

For Example in Figure 1.3:

A. The flowers of many plants have colours and scents that _____

- ______so that they can pick up and _______to other flowers
 B. Many animals have _______that enable sexually
 mature individuals of a species to become mating pairs
- C. Microbes such as bacteria reproduce on their own and form offspring by _____

Asexual Reproduction	Offspring come from a parent
parent offspring	 Each offspring receives a copy of the parent's
Sexual Reproduction	Two parents
parent offspring	 of the offspring's genetic material. Offspring have genetic information that isfrom either parent's Offspring areto their parents or, in most cases, to each other.
cells	

In both asexual and sexual reproduction, the		
information it holds is	to the offspring.	

This information is contained within what is often called the molecule of life:

Inside the Nucleus

- The control center of the WHOLE cell is the ______
- The nucleus contains ______ on how to perform all activity in the cell.
- This is ______ for in the DNA.
- DNA stands for ______

What is DNA and How Does it Work? https://www.youtube.com/watch?v=zwibgNGe4aY

Controlling the Cell's Activity

It is the **nucleus** that controls all activity that occurs in and around the cell. Let's review the structure and function of the nucleus...

What Are the Structures Found Inside the Nucleus?

DNA =

- a **double helix** (twisted ladder)
- Contains the _____ code or the basic messages that control cell function (maintenance, growth, repair etc.)

Facts about DNA

- 1. DNA is a two stranded molecule shaped like a
 - _____ into a spiral double helix
- 2. DNA stores ______ that is passed on to each generation
- 3. DNA is packed into _____
- 4. DNA has a _____
- 5. DNA is made up of ______
 - •
 - These bases are <u>always</u> bound together as ______

- 1. What do the letters of DNA stand for?
- 2. What are the three parts of a nucleotide?
- 3. Which nucleotide component contains nitrogen?
- 4. Name the four bases.

- 5. DNA is often drawn in a "ladder model." Locate this drawing above.
 - a. Label a sugar molecule and a phosphate molecule on the ladder model.
 - b. What part(s) of the nucleotides make up the rungs (steps) of the "ladder"?
 - c. What part(s) of the nucleotides make up the sides (backbone) of the "ladder"?

^{6.} On the ladder model of DNA label each of the bases with the letter A, T, C or G (that are not already labeled).

- 7. When one nucleotide contains thymine, what type of base is the thymine attached to on the opposite nucleotide strand?
- 8. When one nucleotide contains cytosine, what type of base is the cytosine attached to on the opposite nucleotide strand?
- 9. The way in which the nitrogen-containing bases pair up across the DNA molecule follows a very specific set of rules. Write a description of the base pairing rules.
- 10. Fill in the missing bases on the DNA below according to complementary base pairing.

11. The proportions of the bases are consistent within a species; however they do vary between species. Using complementary base pairing, complete the following table to show the percentage of each type of base in the five different organisms.

Organism	Percentage of each type of base				
	Adenine	Guanine	Cytosine	Thymine	
Human	31		19		
Cow	28	22			
Salmon			21	29	
Wheat	27				
Yeast	31				

The Organization of DNA

- If all the DNA in a cell was laid out in a straight line, it would be ______ long
- If all the DNA in EVERY cell in your body was laid out in a continuous straight line, it would be about _____
- So, how do the cells ______ all the DNA to fit into our bodies?

STEP 1: Form Chromatin

- DNA is wrapped around ______ to make ______
 - Chromatin: A thread-like structure made of _____ and _____

STEP 2: Form Chromosomes

THERE ARE AS MANY ATOM

- Chromatin _____ up on itself to make ______
 - _____: tightly coiled chromatin found in the ______.
- Every organism has a characteristic ______ of chromosomes
- Chromosomes within the nucleus are found in
- Most human cells have _____ chromosomes arranged in _____ pairs, including one pair of chromosomes that help determine ______
- How does the DNA _____?

Chromosomes - Single Strand Shape vs "X" Shape

Sister chromatids = replicated form of chromosomes

- Two strands of **replicated** chromosomes that are physically attached together in the _____ by a **centromere**
- Each strand of the X shape is called a _____ chromatid
- Each chromatid contains identical genetic information to its "sister"

Our Chromosomes

Homologous chromosomes = _____ of chromosomes (one from each parent)

- similar length/gene position

We have _____ chromosomes, in _____ pairs.

Every organism has a specific number of chromosomes.

For example:

 Mosquitos have ______ chromosomes (______ pairs)

 Chickens have ______ chromosomes (______ pairs)

 Potatoes have ______ chromosomes (______ pairs)

)[)	and	Ņ	١	l	K
)()[(1	1(35	()
6	7	8	9	10	11	12
28	66	(}	3	10.00	36	22
13	14	15	10	5	17	18
11	88	66	6	đ		1
19	20	21	2	2	x	Y

<u>Genes</u>

- Genes: A _____ of DNA that encodes for a specific ______
- The unit of ______ for all organisms.
- Genes store the information needed to produce
 different

proteins used in the cells of your body.

 Write what each arrow is pointing at in the diagram below. Choose from the following: Condensing of Chromatin; Nitrogen Base Pairs; Chromosome; Chromatin; Gene; DNA Double Helix; DNA and Proteins

- 2. Where in the human cell is DNA stored?
- 3. Organize the following terms based on size, from smallest to largest: *chromatin, nucleus, chromosome, cell, nucleotide, nitrogen containing bases, DNA double helix.*

READING ABOUT: THE FUNCTION OF THE NUCLEUS WITHIN THE CELL PG 29-30

Complete the following reading about the nucleus.

Be sure to "Mark the Text" and highlight KEY DEFINITIONS as you read along.

ALSO, answer the "Reading Check" questions in the side margin as you go!

Before You Read

Which parts of the cell bring in food and get rid of waste? Which parts of a cell control its ability to grow, develop, and make new cells? Record your ideas on the lines below.

Create an Outline

Make an outline of the information in this section. Use the headings in the reading and the labels in the diagrams to help you. Include the boldface terms and any other terms that you think are important.

What does the cell nucleus do?

The **nucleus** is the control centre of the cell. This means that the nucleus directs and controls all of the cell's activities. These activities include the ability of the cell to grow, develop, and replicate (make copies of itself).

How does the nucleus perform its job?

In the nucleus, the instructions for how to perform all cell activities are carried in molecules of **DNA**. DNA is a long, two-stranded molecule with a shape like a ladder that has been twisted into a spiral. DNA stores instructions for how to form cells, for the chemicals and structures that cells must make, and for everything that the cell does. DNA also stores genetic material—information that is passed on from one generation to another when organisms reproduce.

1. What are the functions of DNA?

How is DNA related to chromosomes and genes?

Strands of DNA are packaged tightly into structures called **chromosomes**. Each type of organism has a specific number of chromosomes. For example, humans have 46 chromosomes that are arranged in 23 pairs. One of these pairs helps determine if a person will be born as a male or a female.

Genes are found at specific places on a chromosome. **Genes** are small segments of DNA that carry instructions for making proteins. **Proteins** are molecules that all the cells of the body need in order to work properly. Some proteins carry out cell functions. Other proteins are parts of cell structures. There are as many as 100 000 proteins in the human body.

Where are proteins made?

Proteins are made in the cell by **ribosomes**. Ribosomes are made by a large structure in the nucleus called the **nucleolus**.

This illustration shows DNA packaged in a chromosome, and the chromosome in the nucleus.

Reading Check 2. Why are proteins important to cells?

Inside the nucleus

Vocabulary		
23 46	nucleolus	
chromosomes DNA	number proteins	
genes genetic molecule	ribosomes type	

Use the terms in the vocabulary box to fill in the blanks. Each term may be used more than once. You will not need to use every term.

- 1. The ______ directs and controls the ability of the cell to grow, develop, and replicate (make copies of itself).
- 2. The instructions for how to carry out all cell activities are carried in ______, which is a long, two-stranded ______

with a shape like a ladder that has been twisted into a spiral shape.

3. ______ stores instructions for everything that the cell does. It also stores ______ material—information that is passed on from one generation to another when organisms reproduce.

4. Strands of DNA are packaged tightly into structures called ______.

- 5. Each type of organism has a specific ______ of chromosomes.
- 6. Humans have ______ chromosomes that are arranged in ______ pairs. One of these pairs helps determine if a person will be born as a male or a female.
- 7. ______ are small segments of DNA that carry instructions for making proteins. They are found at specific places on ______.
- 8. Proteins are a type of ______ that all the cells of the body need in order to work properly.
- 9. Proteins are made in the cell by ______, which are made by a large structure in the nucleus called the ______.

The control centre of the cell

Use the diagram to help you answer question 1.

1. Describe the structure of DNA.

Fill in the blanks with the correct terms. Then use your answers to questions 2–5 to label the diagram below.

- 2. The control centre of the cell _____
- 3. Molecule containing instructions for everything the cell does _____
- 4. Tightly packaged structures of DNA _____
- 5. Segment with information to make a protein _____

True or false?

Read the statements given below. If the statement is true, write "T" on the line in front of the statement. If it is false, write "F" and rewrite the statement to make it true.

1. _____ The nucleolus directs and controls all of the cell's activities.

- 2. _____ Instructions for how to carry out all cell activities are carried in molecules of DNA.
- **3.** _____ DNA stores information that is passed on from one generation to another when organisms reproduce.

4. _____ Humans have 46 pairs of chromosomes.

5. _____ One pair of ribosomes helps determine if a person will be born as a male or female.

6. _____ The nucleolus makes ribosomes.

7. _____ Ribosomes make proteins.

8. _____ Genes make chromosomes.