2-3 Trig Ratios \& Finding Side Length

September 24, 2018 9:20 PM

THE TANGENT RATIO

FPC 10
updated June 2018

In each of the following diagrams, identify which ratio is represented (Sine, Cosine or Tangent).
Ratio \qquad Ratio Tangent $=\frac{O P P}{A d j}$ Ratio \qquad

Use a scientific calculator to determine a decimal approximation for each of the following. Round to 4 decimals if necessary.
Notice that $\tan 45^{\circ}=1$ in the question above. $\quad 28$. Explain what it means for a right triangle to Refer to another question above to help you
describe what that means. $Q^{\dagger} \mp$
$\operatorname{Tan}=\frac{O P P}{A d j}=\frac{15}{15}=1 \begin{aligned} & 2 \text { side } \\ & \text { lengths } \\ & \text { sachem }\end{aligned}$

\therefore always 45° angle
\rightarrow all Trig ratios have
Skill Reminder: 3 variables eg. Tan $\theta=\frac{C}{A}$ Solve the following equations. Answer to the nearest hundredth if necessary.

Finding Side Length Using Trigonometry
If we are given \qquad and \qquad in a right-angled triangle we can use one of the three trigonometric ratios to find the lengths of other sides.

For example,

Find x to 2 decimal places.

We are given the \qquad and we want to find the length of the side \qquad the angle, so we use:

$$
\begin{aligned}
\theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
& =\frac{x}{12} \\
x & = \\
& =
\end{aligned}
$$

Example 2:

A 5 m ladder is resting against a wall. It makes an angle of 70° with the ground.

Finding Side Lengths Using Trigonometry

Find the length of the indicated side using an appropriate trigonometric ratio. Answer to tenths.

We know:

We can say:

$$
0.5000=\frac{x}{20}
$$

Solve the proportion:

$$
20(0.5000)=x
$$

$$
20 \sin 30^{\circ}=x
$$

$$
10.0=x
$$

Type $20 \times \sin 30$ into calculator...
$10.0=x$
38.

$\cos \theta=\frac{A}{H-1}$
$\cos (45)=\frac{12}{x}$
$x=\frac{12}{\cos (45)}=16.97 \cong 17.0$

FMPC 10
updated June 2018

Find the length of the indicated side using an appropriate trigonometric ratio.

(1) $\sin (63)=\frac{0 P P}{14.3}$

$$
\begin{aligned}
& O_{P P}=\sin (63) \cdot 14.3 \\
& O_{P P}=12.7 \mathrm{~km}
\end{aligned}
$$

(2) $\cos \theta=\frac{A}{H}$ OR $\tan \theta=\frac{O}{A}$

$A=(\cos 63)(14.3) \quad A=\frac{12.7}{\operatorname{Tan}(63)}$
$A=6.5 \mathrm{~km} \quad A=6.5 \mathrm{~km}$ of what two sides in a right triangle?

Hint: $\operatorname{Tan}\left(40^{\circ}\right)=\frac{2 x}{18}$ means, $2 x=\left(\tan 40^{\circ}\right)(18)$

$$
\text { so... } x=\frac{\left(\tan 40^{\circ}\right)(18)}{2}
$$

Page $\mathbf{1 3}$ |Trigonometry

$\begin{aligned} & a=\sqrt{c^{2}-b^{2}} \\ & a=\sqrt{\left(20^{2}\right)-\left(16^{2}\right)} \\ & a=12 \end{aligned}$	$A=(2.1042)(4)$ $A=8.4168$ - not possible to use $\cos \theta$ to find OPP. $\cos \theta<1$
	64. Draw a diagram illustrating the tangent ratio for $\angle P$ in $\triangle P Q R$ if $\begin{gathered} \angle R=90^{\circ}, \\ \frac{\angle Q}{P Q}=10 \mathrm{~cm}, \\ \overline{P R}=8 \mathrm{~cm} \end{gathered}$
$\begin{aligned} & \cos \angle J \\ & \cos \theta=\frac{A}{H} \\ & \cos \theta=\frac{11}{H} \end{aligned}$ $c=\sqrt{11^{2}+11^{2}}$	
$\begin{aligned} & c=\sqrt{242} \quad \cos \theta=\frac{11}{11 \sqrt{2}} \\ & \sqrt{242}=11 \cdot \sqrt{2} \\ & \sqrt{(12) \times 2} \end{aligned}$	
1) $\sqrt{2}_{\text {P a g e } \mathbf{1 3 . 5} \text { \|Trigonometry } \quad \text { Copyright Mat }}$	thbeacon.com. Use with permission. Do not use after June 2019

Solving Triangles:
To "solve a triangle" means to find the length of all unknown sides and measure of unknown angles. $=180-72-90$
65. Explain the steps you would take to solve the following triangle.

(1) use $\tan \theta=\frac{\text { OPP }}{\text { adj }}$ to solve $\begin{aligned} & \text { For side } A C \\ & \operatorname{Tan}(72)=\frac{O P P}{32 / 3} \quad \text { OPP }=\tan (72)\left(3 \frac{2}{3}\right) \\ & O P P=11.3\end{aligned}$
(2) use $\sin \theta=\frac{0}{1-1}$ (QR) $\cos \theta=\frac{A}{11}$
$\sin 72=\frac{11.3}{1-1}$
Solve the following triangles. Answer to tenths
$\begin{array}{ll}\sin 72=\frac{11}{H} & \cos (72)=\frac{323}{H 1} \\ H=\frac{11.3}{\sin (72)}=11.9 \quad H=\frac{3^{23}}{\cos (72)}=11.9\end{array}$

68.
69. The dotted line is an altitude (perpendicular to base).

Page $\mathbf{1 4} \mid$ Trigonometry
Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

