2) consistent \& Inconsistent solutions

Warm-Up: Solve each system of equations graphically and verify algebraically.

Verification:

$$
\begin{aligned}
& 3 x-y-4=C \\
& 3(0)-(-4)-4=0 \\
& \begin{array}{l}
0+4-4=0 \\
0
\end{array} \\
& 6 x+2 y=-8 \\
& 6(0)+2(-4)=-8 \\
& 0+(-8)=-8 \\
& -8=-8 \vee
\end{aligned}
$$

IMPORTANT IDEAS:
A system of linear equations can have one solution, $N C$ solution, or an infinite number of solutions. Before solving, you can predict the number of solutions for a linear system by comparing the slope and y-intercept of the equations. \Rightarrow Formula is slope-Infercept Form

Example \#1: Predict the number of solutions for each linear system. Justify your answer.
\# 1 step
convert
to slope -nt.
Form:
$y=m x+b$
(1) $x+y=3$
a) (2) $-2 x-y+2=0\}$

$$
(y-i n t) b_{1}=+3
$$

(2)

$$
\begin{gathered}
\text { (2) }-2 x-y+2=0 \\
+y+y \\
-2 x+2=y \\
5=-2 x+2 \\
m_{2}=-2 \\
\text { (y-int) } b_{2}=+2
\end{gathered}
$$

$$
\therefore m_{1} \neq m_{2} \text { diff slopes }
$$ $b_{1} \neq b_{2}$ diff y-int. ONE SOLUTION

$$
\begin{aligned}
& \text { b) (2) } 4 x+6 y+10=0 \\
& \text { (1) } 4 x+3 y=5 \\
& -4 x+10=0 \\
& \frac{6 y}{6}=\frac{-4 x-10}{6} \\
& y=-\frac{4}{6} x-\frac{10}{6} \\
& y=-\frac{2}{3} x-\frac{5}{3}
\end{aligned}
$$

$$
+4 y=4 y
$$

$$
\frac{2 x+1=4 y}{4}
$$

$$
m_{1}=-\frac{2}{3} \quad b_{1}=-\frac{5}{3}
$$

(2)

$$
\begin{aligned}
& \frac{2}{4} x+\frac{1}{4}=y \Rightarrow y=\frac{1}{2 x+\frac{1}{4}} \\
& 3 x-b_{2} y-2=0
\end{aligned}
$$

$$
\begin{aligned}
-2 x-3 y & =5 \\
+2 x & +2 x \\
-3 y & =2 x+5 \\
-3 & -3 \\
y & =-\frac{2}{3} x-\frac{5}{3}
\end{aligned}
$$

$$
y=\frac{3}{6} x-\frac{2}{6}
$$

(1) 1

$$
\frac{6 y=3 x-2}{6}
$$

$$
\begin{aligned}
& y=-\frac{2}{3} x-\frac{5}{3} \\
& m_{2}=-\frac{2}{3} \quad b_{2}=-\frac{5}{3} \\
& \therefore m_{1}=m_{2} \text { parallel } \\
& b_{1}=b_{2}<\text { means same } \\
& \infty \text { solutions }
\end{aligned}
$$

$$
m_{1}=m_{2} \Rightarrow \text { parquet }
$$

$$
b_{1} \neq b_{2}
$$

Example \#2: Given the equation $2 x-y+4=0 \underbrace{\text { write another linear equation that will form a linear system with }}$ the following number of solutions.
(1) Convert into $y=m x+b$
a) Exactly one solution
b) No solution

$$
\underset{\text { be }}{\text { must }} \Rightarrow y=2 x+4
$$

FMPC10

29. Challenge

On the three graphs below, draw a system of linear equations with...

a) One solution

b) No solutions

c) Infinite Solutions

FMPC10

Determine if the following systems have one solution, no solutions, or infinite solutions.

40.	41.	42.	
	$y=x-b$		$3 x-y=7$
$2 y=2 x-4$		$4 y=12 x+b$	$2 x+3 y-2 b=0$
			$y=-\frac{2}{3} x+1$

50. Challenge

Solve the system of linear equations: $y=x+2$ and $3 y=2 x-5$.

