

FMPC10 Updated June 2018

29. Challenge

On the three graphs below, draw a system of linear equations with \dots

30. Challenge	Explain your reasoning.
How many solutions are there to the system	
y = 3x + 3	
y = x + 1	

Types of Solution Sets:				
One solution	No Solutions	Infinite Solutions		
Lines intersect once.Different Slopes.	Parallel Lines Same Slopes Different y-intercepts	Same Lines Same Slopes Same y-intercepts		
We say the system is CONSISTENT	We say the system is INCONSISTENT (no solution)	We say the system is CONSISTENT		

P a g e 9 | Linear Systems

Copyright Mathbeacon.com. Use with permission. Do not use after June $2019\,$

13

FMPC10 Updated June 2018

Determine if the following systems have one solution, no solutions, or infinite solutions.

31.	y = 3x + 3	32.	y = 2x + 5	33.	3y = 9x + 12
	y = x + 1		y = 3x - 5		3x - 9y = 12

One solution because the slopes are different.

Lines will intersect once.

Emics win intersect office.		
6x + 4y = 1 $3x - 2y = 4$	2x + y = 5 $y = -2x - 5$	36. $y = \frac{2}{3}x + 5$ $3y = 2x - 5$

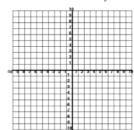
Find the value of k that makes each system **inconsistent**.

37.	38.	39.
y = kx - 3	2y = kx + 1	4kx = y - 2
2y = 2x + 6	2x - y = 7	5x + 3y - 12 = 0

Find the value of *b* that will produce a system with **infinite solutions**.

40.
$$y = x - b$$
 $3x - y = 7$ $2x + 3y - 2b = 0$ $2y = 2x - 4$ $4y = 12x + b$ $y = -\frac{2}{3}x + 1$

P a g e $\,$ 10 |Linear Systems

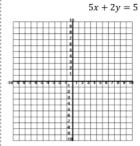

Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

14

43. Solve:

$$2x + 3y - 6 = 0$$

$$3x - y + 2 = 0$$

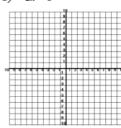


44. The system above is

- a) Consistent
- b) Inconsistent

45. Solve:

$$x - y = 1$$


46. Add the two equations above and graph the new equation.

47. What do you notice?

48. Graph the system of equations:

$$y = x + 2$$

$$3y = 2x - 5$$

49. What is the problem when solving this system by graphing?

50. Challenge

Solve the system of linear equations: y = x + 2 and 3y = 2x - 5.

P a g e $\,$ 11 |Linear Systems $\,$

Copyright Mathbeacon.com. Use with permission. Do not use after June 2019 $\,$

13