


FMPC10 Updated June 2018

Solving Systems of Equations (without graphing)

Part 1: Solving By substitution.

Graph the system of equations: y = x + 2

3y = 2x - 5

My thoughts...

If I graph each of these lines, I notice that they do not cross at a point that I can easily read on **this** graph.

Also, the second equation is not easily graphed.

I can use a different method.

Algebra! See My Solution Below.

: 51. What is the solution to a system of linear equations?

- 52. If a point is present on two lines, what values of that point are equal:
 - a. x-values
 - b. y-values
 - c. both x- and y-values

Solve the system of equations:

"1" y = x + 2

I will substitute (x+2) in to equation "2" for y.

"2" 3y = 2x - 5

$$3(x+2) = 2x - 5$$

$$3x+6 = 2x - 5$$

$$x = -11$$

Then substitute x = -11 into equation "1".

$$y = (-11) + 2$$

$$y = -9$$

Therefore the solution is (-11, -9)

Page 12 |Linear Systems

Converget Mathheacon.com. Use with nermission. Do not use after June 201

FMPC10 Updated June 2018

53.	Solve the following system of equation without graphing, consider the answers to the previous
	questions to guide you.

$$y = 2x - 1$$
$$y = -x + 1$$

54. Verify your solution above.

 $\label{eq:convergence} P\ a\ g\ e\ \ \ \textbf{13 | Linear Systems} \qquad \qquad \text{Copyright Mathbeacon.com. Use with permission. Do not use after June 2019}$

FMPC10 Updated June 2018

Solve the following systems of equations by substitution.

55. Solve. y = 2x - 1

y = 2x - 1y = -x + 1

Since both (2x - 1) and (-x + 1) are equal to 'y', then they must be equal to each other.

2x-1=-x+1

3x = 2

 $x = \frac{2}{3}$

To find 'y', substitute your known 'x' into either equation.

 $y = -\left(\frac{2}{3}\right) + 1$ $y = \frac{1}{3}$

57. Check the solution to the left.

56. How can I check the solution to the left?

Solution $\left(\frac{2}{3}, \frac{1}{3}\right)$

58. Solve.

3x+y=1

2x + 3y = 11

59. Solve.

a + c = 9

2a + c = 11

60. Solve. 3x - 4y = -15

5x + y = -2

61. Solve. d + e = 1

3d - e = 11

Page 14 | Linear Systems

Converight Mathheacon.com. Use with nermission. Do not use after June 201

FMPC10 Updated June 2018

Solve the following systems of equations ${f by}$ substitution.

Solve the following systems of equations by substitution.		
62. Solve.	63. Solve.	
a + 6b = 9	2t - w = 13	
3a - 2b = -23	4t + 3w = 1	
64. Solve.	65. Solve.	
3y = -6x + 15	$y = \frac{x}{3} + 2$	
5y = 5x + 10	3y + 4x = 21	
66. Solve.	67. Solve.	
3x - 2y = 4		
3x + 4y = 10	$\frac{1}{4}x + \frac{1}{2}y = 10$	
3x + 4y = 10	$\frac{1}{4}x - \frac{1}{2}y = 0$	
	$\frac{1}{4}x - \frac{1}{2}y = 0$	
	i e	

Page **15 | Linear Systems** Copyright Mathbeacon.com. Use with permission. Do not use after June 2019