3.2 Exponent Laws

Name: \qquad
\qquad
Investigation \#1:

Expression	Repeated Multiplication	Simplified Power
$3^{3} \times 3^{2}$		
$-3^{3} \times-3^{2}$		
$(-3)^{3} \times(-3)^{2}$		

1) Product Power Law:

$$
\begin{aligned}
& \text { Multiplication Rule } \\
& m^{a} \times m^{b}=m
\end{aligned}
$$

When powers with the same bases are
 multiplied together their exponents are
\qquad

Example \#1: Simplify, then evaluate.
a) $7^{5} \times 7^{3}$
b) $\quad 5^{2} \times 5^{6}$
c) $(-4)^{2} \times(-4)^{3}$

(PRACTICE

Write each as a single power:

? \begin{tabular}{|c|c|c|}
\multicolumn{2}{l}{ Investigation \#2: }

Expression	Repeated Multiplication	Simplified Power
$3^{3} \div 3^{2}$		
$-3^{3} \div-3^{2}$		
$(-3)^{3} \div(-3)^{2}$		

\hline
\end{tabular}

2) Quotient Product Law:

Also written as

$$
x^{a} \div x^{b}=x^{a-b}
$$

Example \#2: Simplify, then evaluate.
a) $\quad 3^{6} \div 3^{3}$
b) $\frac{x^{7}}{x^{3}}$
c) $\quad 2^{2} \times 2^{6} \div 2^{3}$

(PRACTICE

Write each as a single power.

$\text { 199. } \frac{m^{30}}{m^{3}}=$	200. $\frac{m^{12}}{m^{5}}=$	201. $\frac{m^{20}}{m^{9}}=$	202. Spot the error. $\frac{m^{14}}{m^{7}}=\mathrm{m} 2$
211. Spot the error. $(-4)^{120} \div(-4)^{20}=$	212. $(-11)^{25} \div(-11)^{3}=$	213. Spot the error. $-8^{400} \div 8^{300}=$	214. Evaluate. $10^{30} \div 10^{30}=$
$=(-4)^{6}$		$=8^{100}$	

$\begin{array}{l}\text { Investigation \#3: } \\ \begin{array}{|c|c|c|c|}\hline \text { Power } \\ \text { of a } \\ \text { Power }\end{array} \\ \hline\left(3^{2}\right)^{3} \\ \text { Multiplication }\end{array} \quad$ Repeated Multiplication $\left.\begin{array}{c}\text { Simplified } \\ \text { Power }\end{array}\right]$

3) Power of a Power Law:

(PRACTICE

Write as a single power.

$315 .\left(N^{2}\right)^{3}=$	$316 .\left(N^{3}\right)^{2}=$	$317 .\left(N^{5}\right)^{3}=$	$318 .\left(N^{7}\right)^{2}=$
$319 .\left(N^{6}\right)^{3}=$	$320 .\left(N^{2}\right)^{4}=$	$321 .\left(N^{8}\right)^{2}=$	$322 .\left(N^{7}\right)^{0}=$
$323.9^{5} \times 9^{20}=$	$324 .\left(9^{5}\right)^{20}=$	$325.9^{5} \times 9^{4}=$	

Investigation \#4:

Power of a Product	Repeated Multiplication	Repeated Multiplication	Simplified Power
$(3 \times 4)^{2}$			
$(8 \times 7)^{3}$			

HINT: $(x y)^{a}=x^{a} y^{a}$

4) Power of a Product Law:

Product Rule
355. $(m \times n)^{a}=m-n$
356. When a product is raised to an exponent
each number in the brackets is raised to the
same_.

(PRACTICE

Write each product as product of two powers.

359. $(5 \times 2)(5 \times 2)(5 \times 2)$	$360 .(m n)(m n)(m n)(m n)(m n)$	$361 .\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)$
$362 .(5 \times 2)^{3}$	$363 .(m n)^{5}$	

365. When a product is raised to an exponent what happens to each number in the brackets?

Investigation \#5:

Power of a Quotient	Repeated Multiplication	Simplified Power
$\left(\frac{3}{4}\right)^{2}$		
$\left(\frac{1}{6}\right)^{3}$		

5) Power of a Quotient Law:

Quotient Rule
357. $\left(\frac{m}{n}\right)^{a}=\frac{m-}{n-}$

358. When a quotient is raised to an exponent each number in the brackets is raised to the same

Example \#1: Simplify, then evaluate.
a) $\left(4^{2}\right)^{0}$
b) $\left(\frac{5}{3}\right)^{3}$

PRACTICE

Write each quotient as a quotient of two powers.

$366 . \frac{2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3}$	$367 . \frac{m m m}{n n n}$	$368 . \frac{2 m \times 2 m \times 2 m \times 2 m}{5 n \times 5 n \times 5 n \times 5 n}$
$369 .\left(\frac{2}{3}\right)^{5}$	$370 .\left(\frac{m}{n}\right)^{3}$	$371 .\left(\frac{2 m}{n}\right)^{4}$

372. When a quotient is raised to an exponent what happens to each number in the brackets?

Summary of Exponent Laws:

Rules of Exponents or Laws of Exponents	
Multiplication Rule	$a^{x} \times a^{y}=a^{x+y}$
Division Rule	$a^{x} \div a^{y}=a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{x y}$
Power of a Product Rule	$(a b)^{x}=a^{x} b^{x}$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
Zero Exponent	$a^{0}=1$

