3.3. Operations with Exponents

Name:

Block____

In Chapter 1 we practiced evaluating more complicated expressions that required the **order of operations**. Now we will build on these skills with the **addition of exponent rules**.

- B
- Q
- \square
- A
- Š

Determining the Product of a Power

Expressions with powers can have a *numerical coefficient*.

- 1 evaluate the power
- 2 multiply by the coefficient.

Expression	Coefficient	Power	Repeated Multiplication	Value
3(4) ³	3	(4) ³	3 x 4 x 4 x 4	192
2(-2) ³				
-2 ³				

Evaluate each expression:

a) $3(6)^2$

b) $2(-4)^2$

c) -4^6

d) -3(2)⁴

e) $-3(-5)^3$

f) $5 \bullet -6^3$

Evaluate Expressions with Powers

Evaluate expressions with powers using the proper order of operations (BEDMAS)

PRACTICE

a)
$$7 + 3(-2)^3$$

b)
$$4 - (2 + 3)^2 \div 25$$

c)
$$5(4)^3 \div (-2)^4$$

e)
$$\left(\frac{2x^3y^2}{3xy}\right)^2$$
 when x=2 y=3

f)
$$\frac{-16+(-3)^2}{(6-2)^2-(-4)^2}$$

g)
$$[5(-4)^3]^2$$

h)
$$\left[\frac{(-3)^5}{3^3}\right]^2 - \left[\frac{(-2)^5}{2^0}\right]^3$$