3.3. Operations with Exponents

Name: \qquad Block \qquad

In Chapter 1 we practiced evaluating more complicated expressions that required the order of operations. Now we will build on these skills with the addition of exponent rules.

B	FF
r	x
a	p
c	0
k	n
e	n
+	1
s	s

W Left to	
UR Right	D
U	1
T	V
1	1
P	D
L	E

D relight
D
letters that,
stand for
numbers
variables
Determining the Product of a Power
Expressions with powers can have a numerical coefficient. (1) evaluate the power

2 multiply by the coefficient.
 a number bu

PRACTICE
Expand t Evaluate each expression:
co ref. a) $3(6)^{2}$ power

$$
3 \cdot 6 \cdot 6=108
$$

d) $-3(2)^{4}$

$$
-3 \cdot 2 \cdot 2 \cdot 2 \cdot 2=-48
$$

b) $2(-4)^{2}$ power
$(\underset{(\pm)}{2 \cdot \underbrace{(-4) \cdot(-4)}_{\Theta}=\Theta}=32$
e) $-3(-5)^{3}$

$$
\begin{gathered}
-3 \cdot \underbrace{(-5) \cdot(-5) \cdot(-5)}_{-125} \\
=375
\end{gathered}
$$

c) -4^{6}

$$
-1 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=-4096
$$

f) $5 \bullet-6^{3}$

$$
\begin{aligned}
& 5 \cdot-(6 \cdot 6 \cdot 6) \\
& 5 \cdot-(216) \\
& =-1080
\end{aligned}
$$

Evaluate Expressions with Powers

Evaluate expressions with powers using the proper order of operations (BEDMAS)

PRACTICE

$$
\begin{aligned}
& \text { a) } 7+3(-2)^{3} \\
& 7+3 \cdot(-2) \cdot(-2)(-2) \\
& 7+3 \cdot(-8) \\
& 7+(-24) \\
& \text { 7-24 } \\
& =-17 \\
& \begin{aligned}
\text { c) } 5(4)^{3} & \div(-2)^{4} \\
5(64) & \div(16) \\
(5 \times 64) & \div 16 \\
320 & \div 16=20
\end{aligned} \\
& \text { b) } 4-(2+3)^{2} \div 25 \\
& 4-(5)^{2} \div 25 \\
& 4-(25) \div 25 \\
& 4-1=3 \\
& \text { d) }\left[(-7)^{2}-(-2)^{6}\right]^{2} \\
& L \rightarrow R \\
& {[(49)-(64)]^{2}} \\
& {[-15]^{2}} \\
& -15 \cdot-15=225 \\
& \theta \cdot \theta=\Theta \\
& \text { e) }\left(\frac{2 x^{3} y^{2}}{3 x y}\right)^{2} \text { when } x=2 y=3 \\
& \begin{array}{c}
\text { e) } \begin{array}{c}
\left(\frac{\left.m^{2}\right)^{b}}{3 x y}\right) \\
=\left(\frac{2^{2}\left(x^{3}\right)^{2}\left(y^{2}\right)^{2}}{3^{2} x^{2} y^{2}}\right) \\
\left(\frac{2^{2} x^{6} y^{4}}{3^{2} x^{2} y^{2}}\right)=
\end{array} \begin{array}{l}
\left(\frac{2^{2} 2^{6} 3^{4}}{3^{2} 2^{2} 3^{2}}\right) \\
\left(\frac{4 \cdot 64 \cdot 81}{9 \cdot 4 \cdot 9}\right) \\
\frac{20736}{324}=64
\end{array}
\end{array} \\
& \text { f) } \frac{-16+(-3)^{2}}{(6-2)^{2}-(-4)^{2}}(-4) \cdot(-4)=+16 \\
& \frac{-16+9}{(4)^{2}-(16)}=\frac{-7}{10}=" \text { undefinein } \begin{array}{c}
\text { cannot divide } \\
\text { by zero }
\end{array} \\
& \begin{array}{l}
\text { g) }\left[5(-4)^{3}\right]^{2} \\
{[5 \cdot(-64)]^{2} \quad \underbrace{(-4) \cdot(-4)}_{4} \cdot(-4)=} \\
E
\end{array} \\
& {[-320]^{2}} \\
& (-320) \cdot(-320)=102400
\end{aligned}
$$

[81] -[-32765]
$81+32768=$

