4.5 DIVIDING POLYNOMIALS BY MONOMIALS

Name: \qquad Block \qquad
Example\#1: $\frac{6 x-3}{3}$

\qquad

$$
\frac{x^{2}}{x}=\frac{x \cdot(x)}{x}=x
$$

$$
=-7 m+(-4)
$$

$$
=-7 m-4
$$

$$
\begin{aligned}
& \text { Example \#2 } \\
& \text { (1) distribute denomincuter } \\
& \text { (canceld } \\
& \text { methed } \\
& =-5 k-(-3) \\
& \begin{array}{rlrl}
& =-5 k-(-3) & \frac{x}{x} & =\frac{x}{x} \\
& =-5 k+3 & & =x \\
& =x^{\alpha-1}=x
\end{array} \\
& \text { b) } \frac{-6 x^{2}+9 x}{3 x}=\sqrt{-\frac{6 x x^{2}}{3 x}}+\sqrt{\frac{9 x}{3 x}} \text { cancel } \begin{array}{l}
\text { topttom } \\
\text { bot }
\end{array} \\
& \text { * cance } \\
& \text { method }=-5 K-(-3) \\
& \begin{aligned}
\frac{x^{2}}{x} & =\frac{x \cdot x}{x / x}=x=-2 x+3 \\
& =x^{-6=1}=x
\end{aligned}
\end{aligned}
$$

a) $\frac{-36 y^{2}+10.8 y}{6 y}$

$$
=-6 y+1.8
$$

b) $\frac{4 s^{2}-8 s t+12 s}{-8 s}$

$$
\begin{aligned}
& =-\frac{1}{2} s+t-\frac{3}{2} \text { OR } \\
& =-0.5 s+t-1.5
\end{aligned}
$$

WORD PROBLEMS WITH DIVISION AND POLYNOMIALS:
Example \#2:

A business sells an advertising banner where the area of the banner can be represented by the expression $x^{2}+6 x$, and the length is $3 x$.
a) Use algebra tiles to represent the area of the banner, and show the length:

b) What algebraic expressions represents the height of the banner?

$$
H=\frac{3 x^{2}+6 x}{3 x} \quad A=L \cdot H 1
$$

b) Calculate the area and height of a banner when the length is 120 cm .

