Find the slope of the line passing through the points:

80. (2,1) and (6,6)
\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6-1}{6-2} = \frac{5}{4} \]

81. (−5,2) and (4,2)
\[m = \frac{2-2}{4-(-5)} = \frac{0}{9} = 0 \]

82. (−3,0) and (3,−4)
\[m = \frac{-4-0}{3-(-3)} = \frac{-4}{6} = \frac{-2}{3} \]

Challenge #5:
Show that (7, -1) is on the line \(y = 2x - 15 \)

Algebraically:
\[y = 2x - 15 \]
\[-1 = 2(7) - 15 \]
\[-1 = 14 - 15 \]
\[-1 = -1 \]

Yes!

\[\therefore (7, -1) \text{ is on the line } y = 2x - 15. \]
The Equation of a Line

As you have seen, equations such as $2x + 3y = 12$ or $3y = x + 9$ or $y = \frac{5}{6}x - 4$ produce straight lines when graphed. They are linear equations.

Linear Equations may be written in several forms:

- **Slope-Intercept Form:** $y = mx + b$

- **Point-Slope Form:** $y_2 - y_1 = m(x_2 - x_1)$

- **General Form:** $Ax + By + C = 0$

y-intercept

Recall the Equation of a Line Property:

The coordinates of every point on the line will satisfy the equation of the line.

Eg.1. Show that $(7, -1)$ is on the line $y = 2x - 15$

- $y = 2x - 15$
- $(-1) = 2(7) - 15$
- $-1 = 14 - 15$
- $-1 = -1$

If $(7, -1)$ is on the line, it will satisfy the equation.
Substitute the ordered pair into the equation.
Does the left side = right side?
Yes. The point IS on the line.

2 ways to solve:
- **Graphically** - Create a table of values
- **Algebraically** - Use substitution and check.

Determine if the following points lie on the line $y = 2x + 4$ (HINT: substitution!)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>86. (-10, 24)</td>
<td>87. (14, 14)</td>
</tr>
<tr>
<td>$y = 2(x) + 4$</td>
<td>$14 = 2(14) + 4$</td>
</tr>
<tr>
<td>$24 = 2(-10) + 4$</td>
<td>$14 = 10 + 4$</td>
</tr>
<tr>
<td>$24 = -20 + 4$</td>
<td>$14 = 14$</td>
</tr>
<tr>
<td>$24 = -16$</td>
<td>$y = 2x + 4$</td>
</tr>
</tbody>
</table>

Determine if the following points lie on the line $3x - 2y + 6 = 0$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>89. (10, 18)</td>
<td>90. (0, -3)</td>
</tr>
<tr>
<td>$3x - 2y + 6 = 0$</td>
<td>$3(0) - 2(-3) + 6 = 0$</td>
</tr>
<tr>
<td>$3(10) - 2(18) + 6 = 0$</td>
<td>$0 - (-6) + 6 = 0$</td>
</tr>
<tr>
<td>$30 - 30 + 6 = 0$</td>
<td>$0 = 0$</td>
</tr>
<tr>
<td>$0 = 0$</td>
<td>$12 = 0$</td>
</tr>
</tbody>
</table>

yes, (10, 18) is on the line.

no, not on the line.

Copyright Mathbeacon.com. Use with permission. Do not use after June 2017.
92. Determine if the point \((2, -3)\) is on the line \(y = 3x - 9\).

\[-3 = 3(2) - 9\]
\[-3 = 6 - 9\]
\[-3 = -3\]

Explain why or why not:
Yes, it is on the line because when the coordinates \(2, -3\) are substituted into the equation, left side and right side are equal.

93. Determine if the point \((-1, -4)\) is on the line \(3x - 2y - 11 = 0\).

\[3(-1) - 2(-4) - 11 = 0\]
\[-3 + 8 - 11 = 0\]
\[-6 \neq 0\]

Explain why or why not:
No, the coordinates \(-1, -4\) are not on the line \(3x - 2y = 0\) because when substituted \(-6 \neq 0\), i.e., sides are not equal.

94. Determine if the point \((2, -3)\) is on the line \(y + 1 = \frac{3x}{2}\).

\[(-3) + 1 = \frac{3(2)}{2}\]
\[-2 = \frac{6}{2}\]
\[-2 \neq 3\]

Explain why or why not:
No, \((2, -3)\) is not on the line \(y + 1 = \frac{3x}{2}\) because \(-2 \neq 3\).

95. Determine if the set of ordered pairs represents a linear relation. \((x, y)\):

\[x, y\]
\[(2,3), (3,4), (4,5), (5,6)\]

Explain why or why not:
Yes, it is a linear relation because the rate of change (slope) is constant (inc. by +1).

96. Determine if the set of ordered pairs represents a linear relation.

Explain why or why not:
all x values are equal while y changes. This represents a vertical line.

97. Determine if the set of ordered pairs represents a linear relation.

$((2,1), (3,0), (4,-1), (5,-2))$

Yes, there is a constant rate of change.

(i.e. as $x \uparrow +1$, $y \downarrow -1$)
Equation of a Line: Slope-Intercept Form

98. Graph the line \(y = \frac{2}{3} x - 5 \) using a table of values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-\frac{11}{3}</td>
</tr>
<tr>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>3</td>
<td>-\frac{17}{3}</td>
</tr>
</tbody>
</table>

99. Graph the line \(y = -3x + 5 \) using a table of values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-11</td>
</tr>
<tr>
<td>-1</td>
<td>-8</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>

100. What is the slope of the line above?
\[m = \frac{2}{3} \] (note: uphill)

101. What is the slope of the line above?
\[m = -3 \] (note: negative slope)

102. What is the y-intercept of the line above?
\[y = \frac{2}{3} x - 5 \]
\[y_{\text{int}} = -5 \]

103. What is the y-intercept of the line above?
\[y_{\text{int}} = 5 \] (where \(x = 0 \))

104. Compare these values to the equation.
What do you notice?
\[y = \frac{2}{3} x - 5 \]

105. Compare these values to the equation.
What do you notice?
\[y = mx + b \text{ or } y = -3x + 5 \]

We say the equations above are written in **slope-intercept form**. A general formula for an equation in slope intercept form is \(y = mx + b \).

The slope is the coefficient of \(x \).
The y-intercept. (Make note of the sign)

Remember, \(x \) and \(y \) are the coordinates of ANY point on the line. When substituted, they will satisfy the equation. See your work on the previous page!

\[\text{ie: you can choose ANY numbers for your table of values. \{-2,-1,0,1,2\} are just a suggestion.} \]
State the slope and y-intercept for the line represented by each equation.

106. \(y = -\frac{3}{5}x + 2 \)
 \(m = -\frac{3}{5} \)
 \(y\)-int = 2

107. \(y = -\frac{3}{5}x - 7 \)
 \(m = -\frac{3}{5} \)
 \(y\)-int = -7

108. \(y = \frac{2}{3}x - \frac{5}{2} \)
 \(m = \frac{2}{3} \)
 \(y\)-int = -\frac{5}{2}

Write the equation of each line given the slope and y-intercept.

109. \(m = 2 \), \(b = -5 \)
 \(y = mx + b \)
 \(y = 2x - 5 \) *note \pm sign

110. \(m = \frac{2}{3} \), \(b = \frac{2}{3} \)
 \(y = \frac{2}{3}x + \frac{2}{3} \)

111. \(m = -3 \), \(b = -2 \)
 \(y = -3x - 2 \)

For each line below, state the slope, y-intercept, and equation.

112.
 "uphill" = \(m \) slope
 y-intercept = 3
 equation: \(y = \frac{2}{3}x + 3 \)

113.
 slope = \(\frac{-3}{4} \)
 y-intercept = -2
 equation: \(y = -\frac{3}{4}x - 2 \)

114.
 slope = \(\frac{4}{1} = -4 \)
 y-intercept = 0
 equation: \(y = -4x + 0 \)
 \(\therefore y = -4x \)
For each line below, state the slope, y-intercept, and equation.

115. slope: $-\frac{1}{3}$
y-intercept: -3
equation: $y = -\frac{1}{3}x - 3$

116. slope: $\frac{3}{2}$
y-intercept: -4
equation: $y = \frac{3}{2}x - 4$

117. slope: $\frac{3}{1}$
y-intercept: 0
equation: $y = 3x$

118. What do you notice about the equation of the lines passing through the origin?
There is no constant term (y-int).
\[y = mx \]

119. When is b positive? When the line crosses the y-axis above the x-axis.

120. When is b negative? When the line crosses the y-axis below the x-axis.

Graph the equations below by finding the slope and y-intercept from the equation.

121. $y = -3x$

122. $y = \frac{5}{2}x$

\[y = \text{int} = 0 \]
Graph the equations below by finding the slope and y-intercept from the equation.

123. \(y = -x + 3 \)
 \[m = -1 \]
 \[y\text{-int} = 3 \]

124. \(\frac{3y}{4} = -10x + 12 \)
 \[y = -5 + b \]
 \[m = -5 \]
 \[y\text{-int} = b \]

125. \(y - \frac{1}{3}x = 3 + 5 \)
 \[y = \frac{1}{3}x + 2 \]
 \[m = \frac{1}{3} \]
 \[y\text{-int} = 2 \]

126. \(2x - 5y + 20 = 0 \)
 \[+5y \]
 \[+5y \]
 \[2x + 20 = 5y \]
 \[\frac{2x}{5} + 4 = y \]
 \[m = \frac{2}{5} \]
 \[y\text{-int} = 4 \]

127. \(\begin{align*}
12x &= (x - y) + 1 \\
\frac{12x}{2} &= 12 \\
6x &= 12 \\
6x - 3y &= 12 \\
\frac{4x - 12}{3} &= \frac{3y}{3} \\
\frac{4}{3}x - 4 &= y \\
m &= \frac{4}{3} \\
y\text{-int} &= -4
\end{align*} \)

128. \(\begin{align*}
(12x + 3) &= 8 \\
\frac{2x}{3} + \frac{3y}{4} &= -6 \\
8x + 9y &= -72 \\
\frac{12(12x + 3)}{4} &= 8 \\
\frac{2x + 3y}{3} &= -6 \\
8x + 9y &= -72 \\
\frac{y}{9} &= -8x - 72 \\
y &= \frac{-8}{9}x - 8 \\
x &= \frac{-8}{9} \\
y\text{-int} &= -8