5.3 GRAPHING LINEAR RELATIONS

Name:

Block____

1

Review

Relation -

Example:

A) 9RAPHING LINEAR EQUATIONS: METHOD 1-TABLE OF VALUES

You can **graph a linear relation** by building a <u>table of values</u> and graphing the <u>ordered</u> <u>pairs</u> from the table. It helps to know the "rate of change" (or the slope).

Example #1: Crothall Car Rental charges customers \$20 per day, plus \$0.10 for each kilometre driven.

a) Complete the table of values.

Complete the table of values from the given linear relation.

Complete the following table of values: use the formula provided, and substitute x-values

1)	y = 6x	5)	y = -5x + 8	y - axis	
	ху	7	х у		
	2		-5	8	
	7		-8	7	
	-2		4	6 5	
	-8		0		
	0		2		
2)	y = -4x	6)	$y = -\frac{1}{8}x - 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- asis
	ху		ху	-2	
	1		6		
	5		-5	-5 -6	
	8		-3	-7 -8	
	-8		1	-9	
	0		7		

Linear Relation

- A linear relation when graphed forms a straight line.
- Or a straight line can be drawn through every point of the graph.
- A linear relation has a constant rate of change.

Which of the following are linear relations?

"Rate of Change" and "the Slope of a line" mean the same thing

B) SLOPE OF A LINE

Determine the "Rate of Change" for the following table of values:

x	у
5	5
7	3
9	1
11	-1

Example #2: Graph the linear relation y = 2x - 4 using a table of values.

Example #3: The Reynolds student council is planning to hold a dance. The profit in dollars is four times the number of students who attend, minus \$200 for the cost of the DJ.

a) Write an equation that relates the profit (P) to the number of students (n) who attend.

- b) What is the lowest value of *n* that we can include in the table of values?
- c) Create a table of values for this relation

n	P

d) Graph the relation using your table of values.

- e) Does is make sense to join the points? Explain.
- f) The independent variable is _____;
 the dependent variable is _____.
- g) How many students have to attend to make a profit?

Where did you look to find this?

h) How would the graph be different if the DJ was free?

0) GRAPHING HORIZONTAL & VERTICAL LINES

Create a graph for each of the following relations:

The equation of a *horizontal line* has the form _____.

b) x = 3

The equation of a *vertical line* has the form _____

_.

13

D) 9RAPHING: METHOD 2-SLOPE INTERCEPT FORM

You can graph a linear relation represented using the <u>equation of the line</u> in **SLOPE-INTERCEPT FORM**:

y = mx + b

Example #5:

Without using a table of values graph the following relation:

y = 3x + 2

- a) What is the fixed term?
- b) What is the rate of change?

Challenge #9: Write an equation, graph a linear relation and solve a problem.

- 200. Daniel works at a restaurant and currently makes \$10/h. The general manager has just asked him if he would like to take a salary job for \$110 per day.
- A. Write an equation to represent income in terms of hourly pay.
- B. Write an equation to represent income in terms of salary.
- C. Graph a linear relation that compares the two income options.
- D. He decides against the salary position. Was this wise? Explain.

Sketch a graph of each line by identifying the y-intercept & using the slope:

10) y = -x + 3

Graph the following relations:

- a. using the properties of y = mx + b.
- b. then check your points with a table of values.

