

January 10, 2019 8:00 PM

b) $11, 8, 5, 2, \dots$ d= -3

Example 6 Determine if the sequence $\{t_i\} = \{3 - 2i\}$ is urithmetic. Common difference () Solve for t_1 , t_2 , t_3 First 3 terms. $t_1 = (3 - 2(1)) = 1$ $t_6 = (3 - 2(3)) = -1k^{-2}$ $t_6 = (3 - 2(3)) = -3k^{-2}$ 39 (2) is there a yes, d=-2 :. <u>is</u> arithmetic common difference? sequence 2 12th term +3+3 ~= 12

E			sequence	
₩ K <u>r</u>	$\frac{1}{100} = \frac{1}{100} + \frac{1}$	$d = 7.5 f + err m$ $t_{1,2} = 2 + (11)$ $t_{1,2} = 2 + (33)$ $t_{1,2} = 2 + 33$ $t_{1,2} = 35$ $t_{1,2} = 35$ $t_{1,2} = 35$ $a_{1,1} + b_{1,2} = 35$ $a_{1,1} + b_{2,1} + a_{1,2} +$	$t_n = 439$ $t_{uhich} \# kem in the sequence is 439 H_{tim} t_{term} dhe first term dhe first term t_{term} dhe first term dhe fir$	
			4.0	
	Inmawork ()	ASSIGNMENT #		
	Homework	Questions #1. 2-114ever 2001	and reven	
Exerci			Catter 12-12-12	
Exerci		Questions #1.2+14ever 20+1 # 1, 2-3 (even 2	Retter) 1 nd letter)	
Exerci I. Fi	ise Set	Questions #1,0+14(entrand # 1, 2-3 (every 2 5-9 (every 2	Assignment #6 KEY	
Exerci 1. Fi a) b)	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is a(n)	Questions #2.2th@very2ot(# 1, 2-3 (every 2 5-9 (every 2 cutive	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_a = a + (n-1)d$	
Exerci 1. Fi a) b) c)	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is a(n)) A sequence with no last term is a(n)	Questions #J. 2th (styles fact # 1, 2-3 (every 2 5-9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_a = a + (n-1)d$ 2. a) $-1, 2, 7, 14$ b) $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ c) $1, -4, 9, -16$ d) $1, \frac{9}{5}, 3, \frac{81}{17}$ e) $2, 1, \frac{8}{9}, 1$ f) $\frac{2}{3}, \frac{4}{9}$	
Exerci 1. Fi a) b) c) d)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a_i = 2, a_i = 2a_{ini} is a 	Questions #Active Joint # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$	· <u>8</u>
Exerci 1. Fi a) b) c) d)	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is a(n)) A sequence with no last term is a(n)	Questions #Active Joint # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) $-1, 2, 7, 14$ b) $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ c) $1, -4, 9, -16$ d) $1, \frac{9}{5}, 3, \frac{81}{17}$ e) $2, 1, \frac{8}{9}, 1$ f) $\frac{2}{3}, \frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, $-1, 4, 0$ c) $2, 3, 5, 8$ d) $-1, 1, 2, 9$	· <u>8</u>
Exerci 1. Fi a) b) c) d) e)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a_i = 2, a_i = 2a_{ini} is a 	Questions #Active Joint # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) $-1, 2, 7, 14$ b) $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ c) $1, -4, 9, -16$ d) $1, \frac{9}{5}, 3, \frac{81}{17}$ e) $2, 1, \frac{8}{9}, 1$ f) $\frac{2}{3}, \frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) $4, 6, 8, 10$ b) $3, -1, 4, 0$ c) $2, 3, 5, 8$ d) $-1, 1, 2, 9$ 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194	. 2
Exerci 1. Fi a) b) c) d) e) 2. W	 ise Set ill in the blanks. The domain of a sequence is the set of conset A sequence with a last term is a(n) A sequence with no last term is a(n) The sequence a₁ = 2, a₂ = 2a₋₁₁ is a The formula for the <i>n</i>th term of an arithmetic 	Questions #Active Joint # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{3} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$	<u>,</u> <u>8</u>
Exerci 1. Fi a) b) c) d) e) 2. W	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a_i = 2, a_i = 2a_{i-1} is a) The formula for the <i>n</i>th term of an arithmetic Vrite the first four terms of each sequence. 	Questions #J. Chiller Part # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1, 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$ c) 1, -4, 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ e) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1, 4, 0 c) 2, 3, 5, 8 d) -1, 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1, -4, -7, -10, -13	· <u>8</u>
Exerci 1. Fi a) b) c) d) e) 2. W a)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a_i = 2, a_i = 2a_{i-1} is a) The formula for the <i>n</i>th term of an arithmetic Vrite the first four terms of each sequence. 	Questions #J. Chiller Part # 1 , 2-3 (every 2 5 - 9 (every 2 cutive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{3} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$	1, 12
Exerci 1. Fi a) b) c) d) e) 2. W a)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a₁ = 2, a_n = 2a_{nn} is a) The formula for the <i>n</i>th term of an arithmetic Virte the first four terms of each sequence.) {n² - 2} 	Questions #Retriever and $+1$, 2-3 (eveny 2 $5 - 9$ (every 2 outive	Assignment #6 KEY Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1, 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{6}$, $\frac{6}{5}$ c) 1, -4, 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1, 4, 0 c) 2, 3, 5, 8 d) -1, 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{6} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^k}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1, -4, -7, -10, -13 e) $-5, -\frac{23}{4}, -\frac{13}{2}, -\frac{29}{4}, -8$ f) $-\frac{2}{3}, -\frac{7}{15}, -\frac{4}{15}, -\frac{1}{15}, \frac{2}{15}$, <u>8</u>
Exerci 1. Fi a) b) c) d) e) 2. W a) c)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a₁ = 2, a_n = 2a_{nn} is a) The formula for the <i>n</i>th term of an arithmetic Virte the first four terms of each sequence.) {n² - 2} 	Questions #Retriever and $+1$, 2-3 (eveny 2 $5 - 9$ (every 2 outive	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1, 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$ c) 1, -4, 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ e) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1, 4, 0 c) 2, 3, 5, 8 d) -1, 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1, -4, -7, -10, -13	1. 1
Exerci 1. Fi a) b) c) d) e) 2. W a) c)	 ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is a(n)) A sequence with no last term is a(n)) The sequence a₁ = 2, a₁ = 2a_{-n1} is a) The formula for the <i>n</i>th term of an arithmetic Vitie the first four terms of each sequence.) {n² - 2}) {(-1)ⁿ¹n²} 	Questions #2.444.452.264 $\begin{array}{c} + 1 , 2-3 (even j a) \\ 5 - 9 (even j a) \\ 5 - 9 (even j a) \\ cutive$	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	1, 2
Exerci I. Fi a) b) c) d) c) d) c) 2. W a) c) c) c) c) c) c) c) c) c) c	ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_1 = 2, a_2 = 2a_{-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Vitie the first four terms of each sequence.) $\{a^2 - 2\}$) $\{(-1)^{s+1}a^2\}$	Questions #2.444.452.264 $\begin{array}{c} + 1 , 2-3 (even j a) \\ 5 - 9 (even j a) \\ 5 - 9 (even j a) \\ cutive$	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) $-1, 2, 7, 14$ b) $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ c) $1, -4, 9, -16$ d) $1, \frac{9}{5}, 3, \frac{81}{17}$ e) $2, 1, \frac{8}{9}, 1$ f) $\frac{2}{3}, \frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) $4, 6, 8, 10$ b) $3, -1, 4, 0$ c) $2, 3, 5, 8$ d) $-1, 1, 2, 9$ 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\frac{4}{3}(2k-1)$ b) $\sum_{k=1}^{5}k^2$ c) $\sum_{k=1}^{n}\frac{k}{k+1}$ d) $\sum_{k=1}^{n}\frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) $4, 6, 8, 10, 12$ d) $-1, -4, -7, -10, -13$ e) $-5, -\frac{23}{4}, -\frac{13}{2}, -\frac{29}{4}, -8$ f) $-\frac{2}{3}, -\frac{7}{15}, -\frac{4}{15}, -\frac{1}{15}, \frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42	1. 2
Exercia I. Fi a) b) c) d) e) 2. W a) c) e) e) 3. W	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_i = 2, a_i = 2a_{i-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Vrite the first four terms of each sequence.) $\{n^2 - 2\}$) $\{(-1)^{n+1}n^2\}$) $\{\frac{2^n}{n^2}\}$	Questions #2.4.4.4.5.2.4.4. $\begin{array}{c} + 1 , 2-3 (even j a) \\ 5 - 9 (even j a) \\ 5 - 9 (even j a) \\ \hline \\ sequence. \\ \hline \\ sequence. \\ \hline \\ sequence. \\ \hline \\ sequence. \\ \hline \\ sequence is t. = \\ b) \left\{ \frac{n+2}{n+1} \right\} \\ d) \left\{ \frac{3^{-1}}{2^{2}+1} \right\} \\ f) \left\{ \left(\frac{3^{-1}}{2} \right) \right\} \\ \end{array}$	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	1. 1
Exercia I. Fi a) b) c) d) e) 2. W a) c) e) e) 3. W	ise Set ill in the blanks.) The domain of a sequence is the set of consect) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_1 = 2, a_2 = 2a_{-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Vitie the first four terms of each sequence.) $\{a^2 - 2\}$) $\{(-1)^{s+1}a^2\}$	Questions #2.444.452.264 $\begin{array}{c} + 1 , 2-3 (even j a) \\ 5 - 9 (even j a) \\ 5 - 9 (even j a) \\ cutive$	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	
Exerci I. Fi a) b) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) d) c) d) d) d) d) d) d) d) d) d) d	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_i = 2, a_i = 2a_{i-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Vrite the first four terms of each sequence.) $\{n^2 - 2\}$) $\{(-1)^{n+1}n^2\}$) $\{\frac{2^n}{n^2}\}$	Questions #Retrieved at 1 , 2-3 (even a 5 - 9 (even $a5 - 9$ (even a) cutive	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	
Exerci I. Fi a) b) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) c) d) c) c) d) c) c) c) c) c) c) c) c) c) c	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_i = 2, a_i = 2a_{i-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Vrite the first four terms of each sequence.) $\{a^2 - 2\}$) $\{(-1)^{i+1}a^2\}$) $\{\frac{2^n}{n^2}\}$ Vrite the <i>n</i> th term of the suggested pattern.) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},$	Questions #Reflector part # 1 2-3 (every a) 5 -9 (every a) cutive numbers.	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	12
Exerci I. Fi a) b) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) c) d) c) c) d) c) c) d) c) c) c) d) c) c) d) c) c) c) c) c) c) c) c) c) c	ise Set iii in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$) A sequence with no last term is $a(n)$) The sequence $a_i = 2, a_i = 2a_{i-1}$ is a) The formula for the <i>n</i> th term of an arithmetic Write the first four terms of each sequence.) $\{a^2 - 2\}$) $\{(-1)^{i+1}a^2\}$) $\{\frac{2^n}{n^2}\}$ Write the <i>n</i> th term of the suggested pattern.) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},$) $2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27, \frac{8}{81},}$	Questions #Reflector part # 1 2-3 (every a) 5 -9 (every a) cutive numbers.	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	1. 2
Exerci I. Fi a) b) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) d) c) c) d) c) c) d) c) c) d) c) c) c) d) c) c) d) c) c) c) c) c) c) c) c) c) c	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$	Questions #Dettleviter Left # 1 , 2-3 (even; 2 $5 - 9$ (even; 2	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_n = a + (n-1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^n$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{4} (2k-1)$ b) $\sum_{k=1}^{5} k^2$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^4}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 e) 47 d) 15 e) 21 f) $40\frac{1}{3}$	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
Exerci I. Fi a) b) c) d) e) d) e) 2. W a) c) c) 3. W a) c) 4. W a)	ise Set ill in the blanks.) The domain of a sequence is the set of consec) A sequence with a last term is $a(n)$	Questions #Dettleviter Left # 1 , 2-3 (even; 2 $5 - 9$ (even; 2	Assignment #6 KEY 1. a) natural b) finite c) infinite d) recursive e) $t_{4} = a + (n - 1)d$ 2. a) -1 , 2, 7, 14 b) $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{5}$, $\frac{6}{5}$ c) 1, -4 , 9, -16 d) 1, $\frac{9}{5}$, 3, $\frac{81}{17}$ e) 2, 1, $\frac{8}{9}$, 1 f) $\frac{2}{3}$, $\frac{4}{9}$ 3. a) $\frac{1}{n}$ b) $\frac{1}{2^{n-1}}$ c) $(\frac{2}{3})^{n}$ d) $(-1)^{n+1} \cdot 2n$ 4. a) 4, 6, 8, 10 b) 3, -1 , 4, 0 c) 2, 3, 5, 8 d) -1 , 1, 2, 9 5. a) 20 b) 22 c) 50 d) 32 e) 15 f) 194 6. a) $\sum_{k=1}^{5} (2k - 1)$ b) $\sum_{k=1}^{5} k^{2}$ c) $\sum_{k=1}^{n} \frac{k}{k+1}$ d) $\sum_{k=1}^{n} \frac{5^{k}}{k}$ 7. a) 7, 11, 15, 19, 23 b) 15, 12, 9, 6, 3 c) 4, 6, 8, 10, 12 d) -1 , -4 , -7 , -10 , -13 e) -5 , $-\frac{23}{4}$, $-\frac{13}{2}$, $-\frac{29}{4}$, -8 f) $-\frac{2}{3}$, $-\frac{7}{15}$, $-\frac{4}{15}$, $-\frac{1}{15}$, $\frac{2}{15}$ 8. a) 38 b) $-\frac{4}{3}$ c) $\frac{15}{4}$ d) -21.25 e) 1.2 f) -25.75 9. a) 13 b) 18 c) 44 d) 18 e) 33 f) 42 10. a) -5 b) -4 c) 47 d) 15 e) 21 f) $40\frac{1}{3}$ 11. a) $-\frac{3}{2}$ b) 1 c) -4 d) -2 e) -3 , 4 f) -3 , $\frac{1}{2}$	

5.	Find the sum of each sequence.		
	a) $\sum_{i=1}^{3} 4$	b) $\sum_{i=1}^{i} (k^2 - 2)$	
	c) $\sum_{k=2}^{\infty} (k^2 - 1)$	d) $\sum_{k=1}^{1} (k^3 - 1)$	
	e) $\sum_{i=1}^{4} \frac{k^2}{2}$	f) $\sum_{k=1}^{4} (k+1)^2$	
6.	Express each sum using summation notation with inde	dex k = 1.	
	a) 1+3+5+7	b) $1^2 + 2^2 + 3^2 + 4^2 + 5^2$	
	c) $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1}$	d) $5 + \frac{5^2}{2} + \frac{5^3}{3} + \dots + \frac{5^n}{n}$	
7.	Write the first five terms of each arithmetic sequence.	e.	
	a) 7,11,15,,	b) 15,12,9,,	
	c) $a = 4, d = 2$	d) $a = -1, d = -3$	
	e) $a = -5, d = -\frac{3}{4}$	f) $a = -\frac{2}{3}, d = \frac{1}{5}$	
8.	Find the indicated arithmetic term.		
	a) $a = 5, d = 3;$ find t_{12}	b) $a = \frac{2}{3}, d = -\frac{1}{4};$ find t_{γ}	
	c) $a = -\frac{3}{4}, d = \frac{1}{2};$ find t_{11}	d) $a = 2.5, d = -1.25$; find t_{21}	
	e) $a = -0.75$, $d = 0.05$; find t_{∞}	f) $a = -1\frac{3}{4}, \ d = -\frac{2}{3}; \ \text{find} \ t_{ii}$	
		4 2	

9.	Find the number of terms in each	arithmetic sequence.		
	a) $a = 6, t_r = -30, d = -3$	b)	$a = -3, t_s = 82, d = 5$	
	c) $a = 0.6, t_s = 9.2, d = 0.2$	d)	$a = -0.3, t_r = -39.4, d = -2.3$	
	e) -1,4,9,,159	D	23, 20, 17,, - 100	
		,		
10.	Find the first term in the arithmeti	c sequence.		
	a) 6th term is 10; 18th term is 4	6 b)	4th term is 2; 18th term is 30	
	c) 9th term is 23; 17th term is -	-1 d)	5th term is 3; 25th term is - 57	
	e) 13th term is - 3; 20th term is	-17 D	11th term is 37; 26th term is 32	
	.,	,		
11.	Find x so that the values given are	e consecutive terms of an	arithmetic sequence.	
	a) $x + 3$, $2x + 1$, and $5x + 2$	b)	2x, 3x + 2, and 5x + 3	
	c) $x = 1, \frac{1}{2}x + 4, \text{ and } 1 = 2x$	d)	2x - 1, $x + 1$, and $3x + 9$	
	e) $x + 4$, $x^2 + 5$, and $x + 30$	ŋ	$8x + 7$, $2x + 5$, and $2x^2 + x$	
				43

12.	If I_s is a term of an arithmetic sequence, what is $I_s - I_{s-1}$ equal to?	 13. List the first seven numbers of the Fibonacci sequence a₁ = 1, a₂ = 1, a₄ = a₄₋₁ + a₄₋₂, n > 2.
14.	The starting salary of an employee is \$23 750. If each year a \$1250 raise is given, in how many years will the employee's salary be \$50 000?	15. An auditorium has 8 seats in the first row. Each subsequent row has 4 more seats than the previous row. What row has 140 seats?
16.	A well drilling company charges \$8.00 for the first meter, then \$8.75 for the second meter, and so on in an arithmetic sequence. At this rate, what would be the cost to drill the last meter of a well 120 meters deep?	17. It is said that during the last weeks of his life Abraham deMoirve needed 15 minutes more sleep each night, and when he needed 24 hours sleep he would die. If he needed 8 hours sleep on September 1, what day did he die?
18.	The first three terms of an arithmetic sequence are $x - 3$, $\frac{x}{23} + 9$, and $3x - 11$. Determine the fourth term.	19. The first, third, and fifth terms of an arithmetic sequence are 2x − 1, x ¹ − 3, and 11 − x ¹ respectively. Determine the second term.
		4.4
	FMPC10	Updated June 2018
	Answers: 1. Its should estimate his earnings from sales. 2. On graph pg 5. 3. This is the ordered pair that represents the sales that would produce equivalent earnings. 4. When plathen selfs more than \$40 000 of concerte. 5. (2,4) is a valuation because it satisfies both equations in the system. 6. yet 7. no 8. gets 9. yet 1. no 1. John Conditionates satisfy both (all) equations in the system. 1. John Conditionates and the point of intercept. Find the coordinates of the point of intercept. Find the coordinates of the point of intercept.	46. $6n + y = 6 \Rightarrow y = -6n + 6$ 6n + y = -6n + 6 6n + y = -6n + 6 6n + 2 = -6n

	yes		
9,	yes	47.	The new line passes through the solution to the
10.	yes		original system.
	no	48	
12,	If the coordinates satisfy both (all) equations in the	10	••••••••••••••••••••••
	system. Also, the point will be on both lines when		
	graphed.		
13.	(0,1). Plot each equation using slope and y-		
	intercept. Find the coordinates of the point of		······································
	intersection.		
14.	(1,2)		
15.	(2,4)		A
16,	(2.3)		A
17.	(3.1)	49.	The intercept and intersection points are not
18,	(5.3)		integers therefore difficult to read on the graph. See
19,	(2,-1)		page 12.
20.	(2.3)	50.	(-11,-9)
	(0,10)	51.	The point (or sometimes points) that satisfies all the
	(5.6)		equations.
	No solution. Parallel lines never intersect.	52.	c
24.	Both lines share all points. We say there are infinite	53	$(\frac{2}{3}, \frac{3}{3})$
	solutions.		
25.	Both lines share all points. We say there are infinite	54.	$\frac{1}{3} = 2\left(\frac{2}{3}\right) - 1 \Rightarrow \frac{1}{3} = \frac{4}{3} - \frac{3}{3} \Rightarrow \frac{1}{3} = \frac{1}{3}$
	solutions.		
26	Same slope, different y-intercept,		$\frac{1}{3} = -(\frac{2}{3}) + 1 \Rightarrow \frac{1}{3} = \frac{-2}{3} + \frac{3}{3} \Rightarrow \frac{1}{3} = \frac{1}{3}$
	Same slope, same y-intercept. Same line,		1 (1)
	Same slope, same y-intercept. Same line.		
	Answers will vary.		Both equations satisfied by the point $\left(\frac{2}{3}, \frac{4}{3}\right)$.
	One solution: lines will have diff, slopes,		Answered on page.
	No solutions: Parallel lines.	56.	Substitute the point back into the original equations.
	Infinite solutions: same lines,		See #54 above.
10.	One. These equations have different slopes.	58.	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
	One solution.		(2.7)
	One solution.		(-1.3)
	One solution.		(3,-2)
	One solution.		
	No solutions.		$(-6, \frac{5}{2})$
	No solutions.	63.	(4,-5)
	k = 1		(1.3)
	k = 4		(3,3)
			(2.1)
	$k = -\frac{3}{12}$	67.	(20,10)
	b = 2		x + y = 65
	b = -28		x = y + 17
\$2.	$b = \frac{3}{2}$	69.	(41,24)
43,	(0,2)		x + y = 102
	Consistent		x = y - 12
44.	(1.0)	71.	(45.57)
14. 15.			

