

A) BALANCING EQUATIONS

What does it mean to solve an equation?
ofind the numbered value the variable represents - have both sides of the = sign have the same \# In algebra, an e caucus sign is considered a ballance sign.
It tells us that the expression on either side of the equal sign represents the same number.

\square a number an its own atiachecto a variable
Replacing the variable in the equation $x+3=5$ with a constant that makes the equation true is said to be a solution to the equation.

$$
\text { Ne "Solve For } x \text { " }
$$

PRACTICE

n Like algebra tiles...but fancy'.
Write an equation and use" algebra stones" to solve the equation.

When solving an equation, you want to isolate the variable on one side of the equation. This can be done by applying inverse operations.

Inverse operations undo one another.

Warm Up \#1: Write the inverse of each scenario.
a) Put your socks on, then your shoes.

Take off your shoes, then take off socks.
c) Multiply a number by two then add one.
subtract 1, then divide by 2 .
b) Put the key in the engine and turn the car
on. Turn the car off, thentalce the key out.
d) Subtract 3 then divide by 5 .

Multiply by 5 , then add 3

* List the inverse operations:

PRACTICE

We apply these inverse operations when we solve equations.

Definition: Inverse Operations

29. The inverse of adding 5 is subtracting 5.
30. The inverse of subtracting 7 is adding 7 .
31. The inverse of multiplying by 2 is dividing by 2.
32. The inverse of dividing by 2 is muetiplyingby 2 .
33. Additive inverses, $(+,-)$, add to \varnothing and multiplicative inverses, $(x,+)$, multiply to, 1 ...

Perform, the inverse operation to isolate x have x on one side, by itself.
Remember
34. $x+5=10$
$\Rightarrow-5 \quad-5$
$x-5$
to one side
$x=5$
you mustdo

$x=10$
$x=5$
37. $\begin{aligned} & \frac{x}{3}=10 \\ & \text { cancel } \\ & x \div 3=10 \\ & \div 3 \times 3\end{aligned}$
$x=10 \times 3$
$x=30$
B) ONE-STEP EQUATIONS These types of algebraic equations require you to do one operation (on both sides) in order to isolate the variable " x "

PRACTICE

ONE-STEP EQUATION SUMMARY

We have found that to solve equations of the form

$$
\begin{array}{cc}
x+a=b & x-a=b \\
-a & -a
\end{array}+a
$$

we subtract (or add) a to both sides of the equation.

We have found that to solve an equation of the form

$$
\div a x=b \div a
$$

we divide both sides of the equation by a.

We have found that to solve equations of the form

$$
x b \frac{a}{b} x=c \quad \times b \frac{a x}{b}=c
$$

we multiply both sides by b , then divide both sides of the equation by a .

Homework

Complete the following questions to SOLVE FOR X.

TRY the challenge questions...I bet you'll surprise yourself?
2. Determine the solution of each equation.
a) $\begin{aligned} x+3 & =7 \\ -3 & -3\end{aligned}$
$x=4$
b) $x-3=7$ $+3+3$
c) $x+3=-7$
$\begin{array}{ll}-3 & -3\end{array}$
$x=-10$
d) $x-3=-7$
$+3+3$
$x=-4$
e) $-x+3=7$
f) $-x-3=7$
$+3+3$
$\frac{-x}{-1}=\frac{10}{-1}$
$x=-10$

$$
\begin{aligned}
& \text { a) } \frac{x}{6}=2 \times 6 \\
& x=12 \\
& \text { c) } \frac{x}{6} \frac{x}{6}=-2^{\times 6} \\
& x=-12 \\
& \times 10 \\
& \text { e) } \frac{x}{10}=5 \times 10 \\
& x=50
\end{aligned}
$$

g)

$$
\text { g) } \begin{aligned}
3 x+2 / & =2 x-3 \\
-2 & -2 \\
3 x & =2 x-5 \\
-2 x & -2 x \\
x & =-5 \\
\text { i) } & \begin{aligned}
3 x-2 & =2 x-3 \\
+2 & +2 \\
3 x & =2 x-1 \\
-2 x & =2 x \\
x & =-1
\end{aligned} \text { 据 }
\end{aligned}
$$

$$
x=-1
$$

3. Determine the solution of each equation.
xi) $\frac{2}{3} x=12 \times 3$

$$
\frac{2 x}{2}=\frac{36}{2} \quad x=18
$$

* multiply $x(\sqrt{3})^{2}-\frac{2}{3} x=12 \times(-3)$
by a θ to cancel $x \frac{2 x}{2}=\frac{-36}{2} x=-18$
e) $\frac{4}{5} x+3=11$
f) $\frac{4}{5} x-3=9$

$$
\begin{aligned}
& x / \frac{6}{x}=2 x \\
& \frac{6}{2}=\frac{2 x}{2} \quad x=3 \\
& x x \\
& \text { d) } \frac{6}{x}=-2 \times x \\
& \frac{6}{-2}=\frac{-2 x}{-2} x=-3 \\
& x^{x} \frac{10}{x}=5 \times x \\
& \frac{10}{5}=\frac{5 x}{5} \\
& 2=x
\end{aligned}
$$

h)

$$
\begin{aligned}
-3 x+2 & =-2 x-3 \\
-2 & -2 \\
-3 x & =-2 x-5 \\
+2 x & +2 x \\
x & =-5
\end{aligned}
$$

j) $-3 x-2=-2 x-3$

$$
+2 \quad+2
$$

$$
-3 x=-2 x-1
$$

$$
\begin{aligned}
+2 x & +2 x \\
x & =-1
\end{aligned}
$$

$$
\begin{aligned}
& +2 x \\
& \frac{-x}{-1}=\frac{-1}{-1} \Rightarrow x=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { x) } \frac{2}{3} x=-12 \times 3 \\
& \frac{2 x}{2}=\frac{-36}{2} x=-18 \\
& \begin{aligned}
\times(-3)-\frac{2}{3} x & =(-12 \times(-3) \\
\frac{2 x}{2} & =\frac{36}{2} \quad x=18
\end{aligned} \\
& \begin{aligned}
\times(-3)-\frac{2}{3} x & =(-12 \times(-3) \\
\frac{2 x}{2} & =\frac{36}{2} \quad x=18
\end{aligned}
\end{aligned}
$$

h) $-\frac{4}{5} x-7=-3$ operations.

$$
\text { e) } \begin{aligned}
\frac{4}{5} x+3 & =11 \\
+3 & -3 \\
\times 5 \frac{4}{5} x & =8 \times 5 \\
\frac{4 x}{4} & =\frac{40}{4} \\
x & =10 \\
\text { g) }-\frac{4}{5} x+5 & =-7 \\
-5 & =-5 \\
75-\frac{4}{5 x} & =-12 \times 5 \\
-4 x & =\frac{-60}{-4} \\
x & =15
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
\frac{4}{5} x-3 & =9 \\
\times 5 \frac{4}{3} x & =12 \times 5 \\
\times 5 & =\frac{60}{4} \\
x & =15
\end{aligned}
$$

$$
\text { h) } \begin{aligned}
-\frac{4}{5} x-7 & =-3 \\
+7 & -7 \\
5 x-\frac{4}{5} x & =4 \times 5 \\
\frac{-4 x}{-4} & =\frac{20}{-4} \\
x & =-5
\end{aligned}
$$

$$
\begin{aligned}
\frac{-4 x}{-4} & =\frac{-60}{-4} \\
x & =15 \\
\text { i) } \frac{3}{4} x-6+12 & =0 \\
\frac{3}{4} x+6 & =0 \\
-6 & -6 \\
4 \times \frac{3}{4} x & =-6 \times 4 \\
\frac{3 x}{3} & =\frac{-24}{3} \\
x & =-8
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-4 x}{-4}-\frac{20}{-4} \\
& x=-5 \\
& \text { j) }-\frac{3}{4} x-6+12=0 \\
& \frac{-3}{4} x+6=0 \\
&-6-6 \\
& 4 \times \frac{-3}{4} x=-6 \times 4 \\
& \frac{-3 x}{-3}=\frac{-24}{-3} \\
& x=8
\end{aligned}
$$

