6.I SOLVING TWO STEP EQUATIONS

Name:
A) SOLVING TWO STEP EQUATIONS:
Example \#2: Solve each equation. Check your solution by substituting into the original equation and seeing if the left side equals the right side of the equation.

	Solution	Check
a.	$5 \mathrm{x}+8=-47$	$5 x+8=-47$
	$-2 \mathrm{x}-3=-38$	$-2 x-3=-38$
	$5+4 x=11$	$5+4 x=11$
d.	$9-3 x=-18$	$9-3 x=-18$

B) TRANSLATING ENOLISH TO MATHEMATIOS

Complete the table below by filling in the English words that imply each operation.

Addition	Subtraction
Multiplication	Division

Understanding the English to math translation will help to set up equations when given word problems.

Examples:

1. A husband is two years older than his wife, and their son is half the age of his mother. If the sum of all three of their ages is 97 , how old is the son?
2. A board 70 cm in length is cut into two pieces. Once piece is 8 cm shorter than three times the length of the other piece. Find the length of the two pieces.
3. The sum of three consecutive even integers is 43 . Find the three integers.
4. Translate each verbal sentence into an equation.
a) The sum of a number and three is twelve.
c) The product of a number and five is twice the number plus eight.
e) The quotient of a number and five is seven.
b) If twice a number is decreased by five, the result is fifteen.
d) The quotient of a number and three added to twice the number is ten.
f) The sum of a number and three times the number is twelve.

c) SOLVING TWO STEP EQUATIONS WITH FRACTIONS:

Method 1:

STEP (1) Add or subtract the fraction to get the term containing the variable isolated.
STEP (2) Then multiply or divide to solve for x .

	Solution	Check
a.	$\frac{1}{2}+\frac{x}{3}=4$	$\frac{1}{2}+\frac{x}{3}=4$

	Solution	Check
a.	$\frac{2}{3} x-\frac{1}{6}=\frac{3}{4} x$	$\frac{2}{3} x-\frac{1}{6}=\frac{3}{4} x$

Method 2: You may prefer to work with integers than to perform operations with fractions. Change from fractions to integers by multiplying by a common multiple of the denominators in the equation.

Solution	Check	
a.	$\frac{1}{2}+\frac{x}{3}=4$	$\frac{1}{2}+\frac{x}{3}=4$

Solution	Check	
a.	$\frac{2}{3} x-\frac{1}{6}=\frac{3}{4} x$	$\frac{2}{3} x-\frac{1}{6}=\frac{3}{4} x$

Use the method of your choice from above to solve the following equations:
a) $\frac{x}{6}+\frac{1}{3}=\frac{1}{2}$
b) $\frac{x}{6}-\frac{1}{3}=\frac{1}{2}$
c) $\frac{x}{8}+\frac{1}{6}=\frac{7}{24}$
d) $\frac{x}{8}-\frac{1}{6}=-\frac{7}{24}$
e) $\frac{x}{4}+\frac{1}{3}=\frac{7}{12}$
f) $\frac{x}{6}+\frac{x}{8}=7$

D) SOLVINg TWO STEP EQUATIONS WITH DECIMALS:

STEP (1) Multiply both sides of the equation by the LCD (lowest common denominator) to eliminate any decimals.

STEP 2 Then multiply or divide to solve for x .

PRACTICE

	Solution	Check
b.	$3.2 y-9.6=16$	$3.2 y-9.6=16$

E) PERCENT:

"Percent" means \qquad . Therefore, when we are converting percents to decimals we \qquad .

Warm Up: Change each percent to a decimal
a) 51%
b) 5%
c) 6.7%
d) 0.1%

Example: Solve and check.
a) 25% of a number is 8 . What is the number?
b) 7% of a number is 56.7 . What is the number?

HOMEWOPK\} Assignment \#6.1 pg 213-215	Required $\begin{gathered} \# \text { 1, 2aceg, 3, 4, } \\ 5,8,10,11,13,14 \\ 15,19 a \end{gathered}$	Extra Practice \# 2bdfh, 6, 7, q, 12, 16, 19bc	Extension 17, 18

