6.2 SOLVING LINEAR EQUATIONS CONTAINING BRACKETS

Name:

Block

A) WORKING WITH BRACKETS

We will look at **2 DIFFERENT METHODS** to solve linear equations that contain brackets. After trying each method it is up to you to decide which you prefer to use.

METHOD 1: THE DISTRIBUTIVE PROPERTY

- ① Expand the brackets *using the distributive property*.
- 2 Then solve the equation as before...

Example #1

Solve.

5(x - 3) = 10

Distributive Property

Let a, b and c be real numbers.

ADDITION:

$$3(x+5) = 3x + 15$$
 $a(b+c) = ab + ac$
 $3(x+5) = 3x + 15$
 $(b+c)a = ba + ca$
 $(x+5)3 = 3x + 15$

 SUBTRACTION:
 $3(x-5) = 3x - 15$
 $(b-c)a = ba - ca$
 $(x-5)3 = 3x - 15$

PRACTICE

91. Solve. 4(m+3)=40	92. 3(<i>m</i> −5) = 25	93. −5(<i>m</i> −1) = 20
Expand the left side. 4m+12=40		
Subtract 12 from both sides 4m+12- 12 =40- 12 4m=28		
Divide both sides by 4. $\frac{4m}{4} = \frac{28}{4}$ m=7 Check your answer by substituting m=7 into the original equation. 4(7+3)=40	94. 6(<i>m</i> −5) = −6	95. −2(<i>m</i> − 5) = 25
m=7 is the solution.		
a) Solve. $2(5x + 7) = 94$	b) Check using substitution.	

Method 2: Divide first!

① Divide by the______ in *front of the brackets*.

2 Solve the equation like we have in section 6.0 and 6.1.

Example #2

Solve. 5(x - 3) = 10

c) 5(3-2x) = 30

a) Solve. 2(7b + 2) = -94

b) Check using substitution.

d) 3(2x-4) = 8

e) 22 - 3x = 2(x + 6)f) 7x + 2 = 5(x - 2)

B) WORKING WITH FRACTIONS

We have worked with fractions already in section 6.1. In this section they look a bit different but the same principles apply. We will look at **TWO DIFFERENT METHODS** to work with fractions.

METHOD 1: MULTIPLY BOTH SIDES BY THE DENOMINATOR (OR LCM)

- ① Multiply both sides of the equation by the denominator
- 2 Then work with the integers to solve the equation.

Example #1

Solve.

$$\frac{2x+1}{3} = 6$$

d) Check using substitution.

METHOD 2: BREAK INTO FRACTIONS

- 1) Break the equation into fractions.
- 2 Find a common denominator
- (3) Then work with the fractions to solve for the unknown value.

Example #2

Solve.
$$\frac{2x+1}{3} = 6$$

a) Solve.
$$\frac{3x-5}{2} = 8$$

b) Check using substitution.

C) APPLYING EQUATIONS TO GEOMETRY AND REAL-LIFE ACTIVITIES

Example #1

A regular pentagon has side length of x cm. If each side is 3 cm more than double its original length, the perimeter is 56.2 cm. What is the value of x?

Example #2

The amount of food energy recommended per day when on an orienteering trip in the mountains can be calculated using the formula $E = \frac{125}{4}(96 - T)$, where E is a measure of the amount of food energy, in Calories, and T is the outside temperature in degrees Celsius. At what outside temperature would the food energy requirement be:

a) 3000 Cal?

b) 4000 Cal?

Homework	Required #1aceg, 2, 3, 4ab, 5, 6, 7abc, 8, 9,	Extra Practice #1bdfh, 4c, 7d, 10bd, 14, 18, 19,	Extension 20, 21
Assignment #6.2 pg 221 - 225	10ace, 11, 12, 13, 15, 17, 22a	22ь	