6.2 SOLVING LINEAR EQUATIONS CONTAINING BRACKETS

Name: \qquad Block \qquad

A) WORKING WITH BRACKETS

We will look at 2 DIFFERENT METHODS to solve linear equations that contain brackets. After trying each method it is up to you to decide which you prefer to use.

METHOD (1): THE DISTRIBUTIVE PROPERTY

(1) Expand the brackets using the distributive property.
(2) Then solve the equation as before...

Distributive Property

Let a, b and c be real numbers.

Example \#1

Solve. $\quad 5(\mathrm{x}-3)=10$

$$
\begin{array}{ll}
\text { ADDITION: } \\
\text { a(} b+c)=a b+a c & 3(x+5)=3 x+15 \\
(b+c) a=b a+c a & (x+5) 3=3 x+15 \\
\text { SUBTRACTION: } & 3(x-5)=3 x-15 \\
\text { a(b-c) }=a b-a c & \\
(b-c) a=b a-c a & (x-5) 3=3 x-15
\end{array}
$$

PRACTICE

91. Solve. $4(m+3)=40$ Expand the left side. $4 m+12=40$ Subtract 12 from both sides $\begin{gathered} 4 m+12-12=40-12 \\ 4 m=28 \end{gathered}$	92. $3(m-5)=25$	93. $-5(m-1)=20$
Divide both sides by 4 . $\begin{gathered} \frac{4 m}{4}=\frac{28}{4} \\ m=7 \end{gathered}$	94. $6(m-5)=-6$	95. $-2(m-5)=25$
Check your answer by substituting $m=7$ into the original equation. $4(7+3)=40$ $m=7$ is the solution.		

a) Solve. $2(5 x+7)=94$
b) Check using substitution.

METHOD 2: DIVIDE FIRST!

(1) Divide by the \qquad in front of the brackets.
(2) Solve the equation like we have in section 6.0 and 6.1 .

Example \#2

Solve. $5(\mathrm{x}-3)=10$

PRACTICE

a) Solve. $2(7 b+2)=-94$
c) $5(3-2 x)=30$
e) $22-3 x=2(x+6)$
b) Check using substitution.
d) $3(2 x-4)=8$
f) $7 x+2=5(x-2)$

B) WORKING WITH FRACTIONS

We have worked with fractions already in section 6.1. In this section they look a bit different but the same principles apply. We will look at TWO DIFFERENT METHODS to work with fractions.

METHOD (1): MULTIPLY BOTH SIDES BY THE DENOMINATOR (OR LOM)

(1) Multiply both sides of the equation by the denominator
(2) Then work with the integers to solve the equation.

Example \#1

Solve. $\quad \frac{2 x+1}{3}=6$

PRACTICE

c) Solve. $\frac{10 x-4}{12}=8$
d) Check using substitution.

METHOD 2: BREAK INTO FRACTIONS

(1) Break the equation into fractions.
(2) Find a common denominator
(3) Then work with the fractions to solve for the unknown value.

Example \#2

Solve. $\quad \frac{2 x+1}{3}=6$

PRACTICE

a) Solve. $\frac{3 x-5}{2}=8$
b) Check using substitution.

0) APPLYING EQUATIONS TO geOMETRY AND REAL-LIFE ACTIVITIES

Example \#1

A regular pentagon has side length of x cm . If each side is 3 cm more than double its original length, the perimeter is 56.2 cm . What is the value of x ?

Example \#2

The amount of food energy recommended per day when on an orienteering trip in the mountains can be calculated using the formula $E=\frac{125}{4}(96-T)$, where E is a measure of the amount of food energy, in Calories, and T is the outside temperature in degrees Celsius. At what outside temperature would the food energy requirement be:
a) 3000 Cal ?
b) 4000 Cal ?

凡OMOWOPR Assignment \#6.2 pg 221-225	Required \#laceg, 2, 3, 4ab, $5,6,7 a b c, 8,9$, 10ace, 11, 12, 13, 15, 17, 22a	Extra Practice \#1bdfh, 4c, 7d, 10bd, 14, 18, 19, 22b	Extension $20,21$

