Name:
A) WORKINS WITH BRACKETS

We will look at 2 DIFFERENT METHODS to solve linear equations that contain brackets.
After trying each method it is up to you to decide which you preferto use. whe solving for x...
METHOD 1: THE DISTRIBUTIVE PROPERTY USR REVERSE BEa
1 Expand the brackets using the distributive property.
2 Then solve the equation as before..
2 Then solve the equation as before...
Distributive Property

Example \#1
Solve.

$5 x-15=10$
$5(x-3)=10$
+15
$\frac{5 x}{5}=\frac{25}{5}$
$x=5$

Let a, b and c be real numbers.
ADDITION:
$a(b+c)=a b+a c \quad 3(x+5)=3 x+15$
$(b+c) a=b a+c a \quad(x+5) 3=3 x+15$
SUBTRACTION:
$\begin{array}{ll}\text { SUBTRACTION: } \\ a(b-c)=a b-a c & 3(x-5)=3 x-15\end{array}$
($\mathrm{b}-\mathrm{c}$) $\mathrm{a}=\mathrm{ba}-\mathrm{ca}$
$(x-5)^{2}=3 x-15$

a) Solve. $2(5 x+7)=94$

b) Check using substitution.
$10 x+14=94$
$\frac{10 x}{10}=\frac{80}{10}$
$x=8$
$2(5 x+7)=94$
$2(5(8)+7)=94$
$2(40+7)=94$
$2(47)=94$
$94=94 \mathrm{l} \quad 1$

METHOD 1: MULTIPLY BOTH SIDES BY THE DENOMINATOR (OR LOM)
1 Multiply both sides of the equation by the denominator Bottom number
Example \#1
Solve.
 ES!
Solve

(PRACTICE

$$
\begin{aligned}
& \text { d) Check using substitution. } \\
& \begin{aligned}
\frac{10(10)-4}{12} & =8 \\
\frac{100-4}{12} & =8 \\
\frac{96}{12} & =8 \\
8 & =8
\end{aligned}
\end{aligned}
$$

METHOD 2: BREAK INTO FRAOTIONS
$\{$ (1) Break the equation into fractions
(2) Find a common denominator
(5) Then work with the fractions to solve for the unknown value,

Example \#2
Solve.

$$
\text { (1) } \frac{2 x+1}{3+3}=6 \Rightarrow \frac{\frac{2 x}{3}+\frac{1}{3}=\frac{6 \times 3}{1 \times 3}}{\frac{2 x}{3}+\frac{1}{3}=\frac{18}{3}} \begin{gathered}
\text { need comment } \\
\text { dencminater } \\
-\frac{1}{3}-1 / 3
\end{gathered}
$$

(PRACTICE
a) Solve. $\frac{3 x-5}{2}=8$
$\frac{3 x}{2}-\frac{5}{2}=\frac{8 \times 2}{1 \times 2}$
$\frac{3 \pi}{2}-\frac{5}{2}=\frac{16}{2}$

$$
\frac{3 x}{2}=\frac{16+5}{2}
$$

$\begin{array}{ll}\frac{2}{2} & 2 \\ \frac{3 x}{3}=\frac{21}{3} & x=7\end{array}$
0) APPLYING EQUATIONS TO SEOMETRY AND REAL-LIFEACTIVITIES Example \#1

A regular pentagon, has side length_of if each side is 3 cm more A regular pentagon, has side enenghonem. each side is 3 cm more
$2 x+3=$ side length $* 5$

$$
\begin{aligned}
& P=56.2=5 \text { sides } \\
& \times 5
\end{aligned}
$$

$$
5(2 x+3)=56.2
$$

$$
10 x+1.5=56.2
$$

$$
\begin{aligned}
& -x_{x}^{-15 x}=\frac{-15.2}{10} \\
& 106
\end{aligned}
$$

sample \#2

$$
\begin{aligned}
& 16 \\
& x=4.12
\end{aligned}
$$

The amount of food energy recommended per day when on an orienteering trip in the mountains can be calculated using the formula $E=\frac{125}{4}(96-\mathrm{T})$, where E is a measure of the amount of food energy, in Cannes and T is the outside temperature in degrees Celsius. At what

	Required	Extra Practice	Extension
Homework	\#laceg. 2, 3, 4ab, $5,6,7 c b:, 8,9,$	\#1bdfh, 4c, 7d, $10 \mathrm{bd}, 14,18,19$,	20, 21
Assignment \#6.2 pg 221-225	$\begin{gathered} 10 \text { ace, } 11,12,13, \\ 15,17,22 a \end{gathered}$	22 b	

