6.3 SOLVING MULTI-STEP LINEAR EQUATIONS

In this section we are going to look at *more complicated examples* of linear equations that involve using *multiple steps* and *all the techniques we've learnt so far* to find a solution.

The aim of the game:

Use the algebraic techniques we have been working with in this unit to **isolate the variable on** <u>one side</u> of the equation and the **numeric terms on the** <u>other side</u> of the equation

A) VARIABLES ON BOTH SIDES

Many multi-step equations contain variables on ______ sides.

So how do we decide which to isolate? COLLECT LIKE TERMS!

Move all variables to the same side and all constant (numbers only) terms to the other side!

EXAMPLE:

a) 3m + 3 = 7m + 12

b) -5m + 20 = -7m - 15

Block____

 120. Solve. 5m+1=3m-7
 121. Solve. 13m+5=11m-7
 124. 2m+3=-7m-15

 122. Solve. 2m+10=7m-15
 123. Solve. -3m+18=6m-6
 125. Solve. 2m+20=-7m-15

B) BRACKETS, FRACTIONS VARIABLES ON BOTH SIDES ... OH MY!

Now that the equations are getting more complex, it may helpful to review these steps.

- Eliminate <u>Fractions</u> by multiplying both sides by the common denominator.
- Eliminate brackets by <u>Expanding</u>.
- Collect Like Terms on each side of the equal sign.
- Get variables to same side by <u>Subtracting or Adding</u> variables to each side.
- Get constants to same side by <u>Subtracting or Adding</u> constants to each side.
- Isolate the variable by <u>Dividing</u> both sides by the coefficient.

EXAMPLE:

a)
$$2(6w + 2) = 4w - 3$$

b) $\frac{2}{3} + \frac{5}{6}c = \frac{1}{3}c - \frac{1}{6}$
c) $2(m - 1) + \frac{5m}{2} = \frac{2}{3}(m + 3)$
practice
142. Solve. $4(m-1)-6m=-10(2m-1)-1$
158. $\frac{5m}{2} + \frac{m}{3} = \frac{1}{2}m+5$
160. $m - \frac{m}{3} = \frac{1}{4}m + 4$

π

KEEP

DO

MATH

C) MULTI-STEP LINEAR EQUATION WORD PROBLEMS

Example 1:

The rectangles pictured have the *same perimeter*.

a) Determine the value of x that makes this true.

b) What are the dimensions of each rectangle?

Example 2:

Ted and Wayne are both travelling across British Columbia. Ted drives at an average speed of 90 km/h. Wayne left 30 minutes later and drove at an average speed of 100 km/h.

a) How long did it take for Wayne to catch up with Ted?

b) How far have they driven to this point?

Homework	Required	Extra Practice	Extension
	#1, 2, 4ace, 5acef,	#3, 4bdf, 5bd,	23, 24, 25
Assignment #6.3 231 - 235	басе, 7, 10аьс, 11, 13, 14, 15, 16, 17, 18, 20, 26а	6Ьd, 8, 9, 10d, 12, 19, 21, 22, 26Ь	