7) slope \& points on lines

Warm-Up:

1. Determine the slopes of the following lines:

2. On the grid, draw a line through the point $(-4,2)$ with the following slope:
slope: $=$
a) Parallel to $-\frac{2}{3}=-\frac{2}{3}$
b) Perpendicular $\sigma \theta_{3}^{2} 5= \pm \frac{3}{2}$

$$
\begin{aligned}
& \text { - negative } \\
& \text { reciprocal }
\end{aligned}
$$

Line Segment	Slope
AB	$\frac{15}{8}$
CD	$\frac{-\frac{8}{5}}{}$
EF	$\frac{12}{0}=$ undefined.
GH	$\frac{2}{16}=\frac{1}{8} \quad\binom{$ always }{ simplify }

3. Compute the slopes of the following line segments, using the coordinates provided:
a) AB
$\begin{array}{lr}A(1,8) & B(7,11) \\ x, y & x_{2}, y_{2}\end{array}$
$\left.m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{11-8}{7-1}=\frac{3}{6} \right\rvert\,=\frac{1}{2}<3+0 \quad$ simplify
b) CD

$$
m=\frac{2-(5)}{6-(2)}=\frac{-3}{4}
$$

- Solve for " x_{2} "

4. A line has a slope of $\frac{9}{7}$. It passes through $(-1,-4)$ and $(x, 5)$. Find the value of x.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \frac{9}{7}=\frac{5-(-4)}{x_{2}-(-1)}
\end{aligned} \quad \begin{aligned}
& \frac{9}{7}=\frac{9}{x} x_{2}+1 \\
& 9\left(x_{2}+1\right)=7 \times 9 \\
& 9 x_{2}+9=63 \\
& -9 \\
& \frac{9 x}{9}=\frac{-54}{9}
\end{aligned} \Rightarrow x_{2}=6
$$

Part 1: Linear Relations
(1) $\frac{-7}{5}=\frac{y-3}{0-(-1)}$

Linear Relations have a constant rate of change/slope.

Example \#1: Determine whether the following relations are linear.

rate of change
Linear: YES or NO
Slope:

$$
\frac{\Delta y}{\Delta x}=\frac{+6}{+2}=3
$$

b)
$+5\left(\begin{array}{c|c|}\hline 5 & 8 \\ \hline 10 & 7 \\ \hline 15 & 6\end{array}\right)-1$

Linear: YES or NO
Slope:

$$
\frac{\Delta y}{\Delta x}=\frac{-1}{5}
$$

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

c) | \mathbf{x} | \mathbf{y} | |
| :---: | :---: | :---: |
| 1 | -9 | +3 |
| 2 | -6 | +3 |
| 3 | -1 | +5 |
| 4 | 6 | +7 |

Aby different amounts NOT
Linear: YES or NO
slope: na

To find the slope from an equation, always change the equation to be in the form $y=m x+b$.
Example \#2: Find the slope of the following lines (without graphing).

$$
\begin{aligned}
& \text { a) } y=-4 x+7 \\
& m=-4=\frac{-4}{1}=\frac{\text { rip }}{\text { rn }}
\end{aligned}
$$

(1)

$$
\text { b) }+3 x-2 y=-18
$$

$$
\begin{aligned}
& +3 x-2 y=-18 \\
& -3 x+y^{-3 x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { convert }+u \\
& y=m x+b
\end{aligned}
$$

$$
\begin{aligned}
& 1=m x+b \\
& \text { coif. of } y=1
\end{aligned}
$$

$$
\frac{-2 y}{-2}=\frac{-18-3 x}{-2}
$$

$$
\begin{aligned}
& y=9+\frac{3}{2} x \\
& y=\frac{3}{2} x+9
\end{aligned}
$$

$\sqrt{m=\frac{3}{2}}$
Part 3: Determining if Points are on a Line

$$
\begin{gathered}
\text { c) }\left(\begin{array}{c}
x-2=\frac{1}{2}(x+3)
\end{array}\right)^{4} \\
4 y-8=1(x+3) \\
4 y-8=x+3 \\
y=\frac{x+11}{4} \\
y=\frac{1 x}{4}+\frac{11}{4} \\
y=\frac{1}{4} x+\frac{11}{4}
\end{gathered}
$$

of the line (ie: it must fit into the equation and remain equal)
Example \#3: Do the following points fall on the line $2 x+5 y=20 ? ~(x, l)$ if it stilts 2 , $\sin ^{\prime \prime}$
$x y$

$$
\begin{gathered}
2 x^{a}(\hat{5}, 2)=20 \\
2(5)+5(2)=20 \\
10+10=20 \\
20=20
\end{gathered}
$$

d) $(0,4)$

$$
\begin{aligned}
2(0)+5(4) & =20 \\
0+20 & =20 \\
\sqrt{20} & =20
\end{aligned}
$$

b) $\begin{gathered}\boldsymbol{x} \boldsymbol{y} \\ (-3,9)\end{gathered}$
b) $y=-\sqrt{x}^{2}$
$9=-(-3)^{2}$
$9=-(9)$
$9 \neq-9$ Note
$(9,9)$ is Not on the line.

Homework
assignment \#7
pages \#|8-24-questions \#64-97

Slope of a Line

Challenge \#4:
60. Plot the following points: $(-1,-5),(2,-4),(5,-3),(8,-2)$

Some notes here...
62. Choose three sections of the line you just plotted and find their slopes.

Slope of section 2:

Slope of section 3:
63. What do you notice?
61. Draw a line through the points you plotted.

Slope of section 1:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slope of a Line

Recall from our discussion of line segments that slope can be calculated using: $\boldsymbol{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\frac{\text { rise }}{\text { run }}$ For a straight line, the slopes of all segments on the line are equal. That is, if you find the slope of any two parts of the line, they will be equal.

Pick any three segments of the line and calculate the slope.

Slope will always be $\frac{1}{3}$.

The equations discussed earlier in this booklet result in lines that continue in two directions. Working with slope allows us to extend the line if we need to.

Remember:

- Parallel lines have equal slopes.
- Perpendicular lines have slopes that are negative reciprocals.

64. Find the slope of the line represented by
the equation $y=3 x-5$.
Slope is

Pag e $\mathbf{1 8}$ |Linear Relations
70. Draw a line through $T(5,7)$ with slope $\frac{2}{5}$.

72. Draw a line through $U(2,-2)$ perpendicular to the line in the question above.

74. The slope of a line is $\frac{3}{2}$. If the line passes through point $B(5,2)$, find the coordinates of another point.
71. Draw a line through $U(2,-2)$ parallel to the line in the previous question.

73. If you were given a triangle with its vertices drawn as coordinates on an $x-y$ coordinate plane, how could you determine if the triangle was a right triangle?

Do you know another way?
75. The slope of a line is -2.5 . If the line passes through point $C(-1,2)$, find the coordinates of another point.
76. Julanya's internet provider charges a flat fee for the first 8 hr of access per month, plus an hourly rate for additional access. One month, 15 hr of usage cost her $\$ 25.88$. The next month, 27 hr of access cost her $\$ 49.76$.
a) Graph the data.

Hours of usage
77. Find the hourly rate for access above $8 \mathrm{hr} / \mathrm{month}$.
78. What word is synonymous with rate in this unit?
79. Find the flat fee for the first 8 hours. (Where will you find this value on the graph?)

Find the slope of the line passing through the points:
80. $(2,1)$ and $(6,6) \quad 81,(-5,2)$ and $(4,2)$
81. $(-5,2)$ and $(4,2)$
82. $(-3,0)$ and $(3,-4)$
83. The slope of a line is -2 . The line passes through $(0,0)$ and $(-3, y)$. Find the value of y.
84. A line has a slope of 1.5 . It passes
through $(-2,1)$ and $(x, 7)$. Find the value of x.
85. Challenge\#5: Show that $(7,-1)$ is on the line $y=2 x-15$

Algebraically:

Graphically:

The Equation of a Line

As you have seen, equations such as $2 x+3 y=12$ or $3 y=x+9$ or $y=\frac{5}{6} x-4$ produce straight lines when graphed. They are linear equations.

Linear Equations may be written in several forms:

$$
\begin{array}{ll}
\text { Slope-Intercept Form: } y=m x+b & y=3 x+2 \\
\text { Point-Slope Form: } \quad y_{2}-y_{1}=m\left(x_{2}-x_{1}\right) & (y-2)=3(x-0) \\
\text { General Form: } A x+B y+C=0 & 3 x-y+2=0
\end{array}
$$

Recall the Equation of a Line Property:

The coordinates of every point on the line will satisfy the equation of the line.
Eg.1. Show that $(7,-1)$ is on the line $y=2 x-15$
$y=2 x-15 \quad$ If $(7,-1)$ is on the line, it will satisfy the equation.
$(-1)=2(7)-15 \quad$ Substitue the ordered pair into the equation.
$-1=14-15 \quad$ Does the left side $=$ right side?
$-1=-1 \quad$ Yes. The point IS on the line.

Determine if the following points lie on the line $y=2 x+4$ (HINT: substitution!)
86. $(-10,24)$
87. $(5,14)$
88. $(-7,-10)$

Determine if the following points lie on the line $3 x-2 y+6=0$
89. $(10,18)$

92. Determine if the point $(2,-3)$ is on the line $y=3 x-9$.

$$
-3=3(2)-9
$$

$$
-3=6-9
$$

$$
-3=-3
$$

Explain why or why not:
res, it is on the line because when
the coordinates 2,-3 are substituted into the equation, left side and right side are equal.
Explain why or why not:
93. Determine if the point $(-1,-4)$ is on the line $3 x-2 y-11=0$.
94. Determine if the point $(2,-3)$ is on the line $y+1=\frac{3 x}{2}$.
95. Determine if the set of ordered pairs represents a linear relation.
$(2,3),(3,4),(4,5),(5,6)$
96. Determine if the set of ordered pairs represents a linear relation.
$(1,1),(1,2),(1,3),(1,4)$
97. Determine if the set of ordered pairs represents a linear relation.
$(2,1),(3,0),(4,-1),(5,-2)$

Explain why or why not:

