9) equations of lines in three forms

The Three Forms of Writing Equations of Lines

1. Point-Slope Form:
 \[y - y_1 = m(x - x_1) \]
 - a point (coordinate) on the line \((x_1, y_1)\)

2. Slope-Intercept Form:
 \[y = mx + b \]
 - \(m\) = slope
 - \(b\) = \(y\)-intercept

3. General Form
 \[Ax + By + C = 0 \]
 - \(A\), \(B\), \(C\) must be integers; no fractions

*order is important:
- \(-x + y + \frac{1}{2} = 0\)

Part 1: Writing the Equation of a Line in General Form

Example #1: Write the following equations in general form.

a) \(y = 4x - 10\)

 \[4x - y - 10 = 0 \]

b) \(\frac{12}{y} - 4 = 5x\)

 \[12 - 4y = 5x\]
 \[12 - 4y - 5x = 0 \]

 \[\text{L.C.M.} \quad \frac{20}{5} + \frac{5}{1} = 10 \]

 \[20x - 3y + 16 = 0 \]

Example #2:
 \[4x - 5y + 10 = 0 \]
Part 2: Writing the Equation of a Line in Three Forms

Example #2: Use the following slope and point on the line to write the equation of the line in all three forms.

When you have a slope and a point, ALWAYS come up with your equations in this order:
1. Slope-Point Form
2. Slope-Intercept Form
3. General Form
4. Check: if you plug your point back into all three equations, does it work?

a) \(m = 2 \), \(P(4, 7) \)

1. Point-Slope Form:
 \[y - y_1 = m (x - x_1) \]
 \[y - 7 = 2(x - 4) \]

2. Slope-Intercept Form:
 \(y = mx + b \)
 \[y - 7 = 2(x - 4) \]
 \[y - 7 = 2x - 8 \]
 \[y = 2x - 1 \]

3. General Form:
 \(Ax + By + C = 0 \)
 \[y = 2x - 1 \]
 \[-2x + y = -1 \]

b) \(m = -\frac{3}{4} \), \(P(2, 4) \)

1. Point-Slope Form
 \[y - y_1 = m (x - x_1) \]
 \[y - 4 = -\frac{3}{4} (x - 2) \]

2. Slope-Intercept Form
 \(y = mx + b \)
 \[4 - 4 = -\frac{3}{4} (x - 2) \]
 \[0 = -\frac{3}{4} x + \frac{3}{2} \]
 \[0 = -\frac{3}{4} x + 1.5 \]
 \[\frac{3}{4} y = \frac{3}{4} x + 1.5 \]
 \[y = \frac{3}{4} x + 1.5 \]

3. General Form
 \(Ax + By + C = 0 \)
 \[3x + 4y - 5.2 = 0 \]

Check: if you plug your point back into all three equations, does it work?
Point-Slope Form

\[y - y_1 = m(x - x_1) \]

- **c)** \(m = \frac{1}{3} \) \(x_1, y_1 \) (6, 3)

 \[y - 2 = -\frac{1}{3}(x + 6) \]

Slope-Intercept Form

- **a)** \(y = -\frac{2}{3}x + 3 \)

General Form

- **b)** \(2x + 5y + 7 = 0 \)

Assignment #9

- Pages #30-35 questions #138-156

Quiz Thursday

- Lessons #5-9

The Equation of a Line

<table>
<thead>
<tr>
<th>Form</th>
<th>(y = mx + b)</th>
<th>(y - y_1 = m(x - x_1))</th>
<th>(Ax + By + C = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope-Intercept Form</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point-Slope Form</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Form</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **m** is the slope
- **b** is the y-intercept
- Derived from \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
- Cross multiply to get point
- A must be positive.
- \(A, B, C \) are integers.
The Equation of a Line

The three forms

<table>
<thead>
<tr>
<th>Slope Intercept Form</th>
<th>Point-Slope Form</th>
<th>General Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = mx + b)</td>
<td>(y - y_1 = m(x - x_1))</td>
<td>(Ax + By + C = 0)</td>
</tr>
</tbody>
</table>

- \(m \) is the slope
- \(b \) is the \(y \)-intercept
- Derived from \(m = \frac{y_2-y_1}{x_2-x_1} \)
- Cross multiply to get point-slope form.
- Need one point and slope

Write in general form.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>138. (y = 3x - 5)</td>
<td>139. (y - 5 = x + 7)</td>
<td>140. (5 - 2x = -9y + 2)</td>
</tr>
<tr>
<td>141. (-\frac{2}{3}x - 4y = 2)</td>
<td>142. (y - 5 = \frac{3}{7}x + 7)</td>
<td>143. (5 = \frac{2}{7}y + \frac{2}{3}x)</td>
</tr>
</tbody>
</table>

Challenge #6

Write the equation of the line that passes through \(A(2, 5) \) and has slope 3. Express your answer in general form and in slope intercept form.
The Equation of a Line

IMPORTANT!!! There is only one line that passes through a given point with a given slope.

Given the slope and a point:

Eq. 1. A line passes through A(2,5) and has slope 3. Write the equation of the line.

Use the slope formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
Cross-Multiply. This creates the **Point-Slope form** of an equation.

$$m(x_2 - x_1) = y_2 - y_1$$
Fill in what you know. $m = 3$. Substitute the given point in for x_1 and y_1.

$$3(x - 2) = (y - 5)$$
This is our equation in **point-slope form**.

We no longer need the subscripts on x and y

$$3x - 6 = y - 5$$
Expanded.

$$3x - y = 1$$
Collecting the terms to the left side is called writing the equation in **general form**.

Or

$$y = 3x - 1$$
Isolate for y to get the equation in **slope-intercept form**.
Write the equation of the line that passes through the given point and has the given slope. Express the equation in a) point-slope form b) general form c) slope-intercept form.

<table>
<thead>
<tr>
<th>145. (2,3), -2</th>
<th>146. (-5,2),2</th>
<th>147. (-5,-1), -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y - 3 = -2(x - 2))</td>
<td>(y - 3 = 2(x + 2)) point-slope</td>
<td>(y - 3 = -2x - 4) slope-intercept</td>
</tr>
<tr>
<td>(y = -2x + 1) slope-intercept</td>
<td>(2x + y + 4 = 0) general</td>
<td>(y - 3 = -2x - 4) general</td>
</tr>
</tbody>
</table>
Write the equation of the line that passes through the given point and has the given slope.
Express the equation in a) point-slope form b) slope-intercept form c) general form.
151. \((3, -6), m = -3\)

Start with Point-Slope formula:

\[y_2 - y_1 = m(x_2 - x_1) \]

\[y - (-6) = -3(x - 3) \]

\[y + 6 = -3(x - 3) \]

\[y + 6 = -3x + 9 \]

\[y = -3x + 3 \]

\[3x + y - 3 = 0 \]

\[a) \ y + 6 = -3(x - 3) \]

\[a) \]

\[b) \ y = -3x + 3 \]

\[b) \]

\[c) \ 3x + y - 3 = 0 \]

\[c) \]

152. \((3, 6), m = 5\)

153. \((-2, -1), m = \frac{1}{2}\)
Slope + Linear Relations

154. $(5, -6), m = -\frac{3}{4}$

155. $(\frac{1}{2}, 4), m = \frac{1}{3}$

156. $(-2, 1), m = 1.5$

<table>
<thead>
<tr>
<th>a)</th>
<th>a)</th>
<th>a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td>b)</td>
<td>b)</td>
</tr>
<tr>
<td>c)</td>
<td>c)</td>
<td>c)</td>
</tr>
</tbody>
</table>