science 9

Unit 2: chemistry

Book 2:Atoms. The Periodic Table \& Bohr models
name:
block:
Periodic Table of the Elements

PARTA: THE ATOM Ė SUBATOMIC PARTICLES

What are atoms and how do we know they exist?

- An atom is the \qquad particle of an \qquad that still has the identity and properties of the element.
- Atoms are made up of \qquad particles (particles that are smaller than atoms).
- These particles are \qquad and \qquad

Summary of the Parts of an Atom:

Name	Symbol	Charge	Location	Relative Mass

The Nucleus

- At the \qquad of every atom is a \qquad
- \qquad of the space inside an atom is taken up by the \qquad the nucleus is _
- As atoms get bigger, the \qquad in the nucleus repel (push away from) each other more. So are required to make the nucleus stable.
- Neutrons are though to be needed to hold all the protons together in the nucleus
- The bigger the nucleus, the \qquad are needed.

PRACTICE

True of False:

a) All matter is made of small particles called atoms
b) Atoms of one elements are different form the atoms of other elements \qquad
c) Electrons are locate din the nucleus of an atom \qquad
d) Most of the mass of an atom is concentrated in it's electrons
e) The nucleus contains protons and electrons
f) The nucleus is the tiny, dense, central core of the atom.

Atomic Number (Z)

The number of \qquad in an atom is known as the atomic number or proton number.

It is the smaller of the two numbers shown in most periodic tables. (usually on top...dependswhere you're looking)

atomic number $=$

3	+	4 2+
Li		Be
Lithium		Beryllium
6.9		9.0
11	+	12 2+
Na		Mg
Sodium		Magnesium
23.0		24.3

- always the \qquad for a particular element.
- The number of protons the element!
- is also equal to the \qquad charge of the nucleus
- this is also called the positive \qquad .
- in ther periodic table atoms are listed from \qquad to right by \qquad atomic number

PRACTICE

If an atom has a $Z=12$, then it MUST be an atom of:
If an atom has a nuclear charge of +24 , then it MUST be an atom of: \square
What is the atomic number of polonium?
What is the positive nuclear charge of lead?
The overall charge on an atom is zero because the number of \qquad $=$ number of \qquad

How many electrons?

Atoms have no overall electrical charge and are \qquad

This means atoms must have an \qquad number of positive protons and negative electrons.

Atoms	Protons	Neutrons	Electrons
helium			
copper			
iodine			

The number of electrons is therefore the same as the atomic \qquad .

- Atoms of a certain element always have the same number of \qquad but can have different numbers of neutrons....these are called \qquad . They are the different "versions "of an atom of an element that can exist.
- Mass number $=$ the total number of particles with mass (\qquad $+$ \qquad) in the \qquad of an element

○ \qquad have a mass of almost zero, which means that the mass of each atom results almost entirely form the number of protons and neutrons, \qquad electrons.

- Mass number is ALWAYS reported as a \qquad
- The mass number \qquad appear exactly like this on the periodic table.
- BE CAREFUL! The larger of the two numbers (usually on the bottom) shown on your periodic table is the relative \qquad . It is the average mass number of the element (average of the isotopes).
- We must ROUND the atomic mass to the nearest WHOLE NUMBER in order to determine the number of neutrons.
- RULE: numbers $0 \rightarrow 4=$ ROUND \qquad $5 \rightarrow 9$ ROUND \qquad

16 2-	17	-
S	CI	
Sulfur	Chlorine	
32.1	35.5	
34 2-	35	-
Se	Br	
Selenium	Bromine	
79.0	79.9	

- \qquad are different atoms of a particular element that have the SAME number of
\qquad but a DIFFERENT number of \qquad _.
- The mas number \qquad be used to identify the element.
- Example: Both He and H can have a mass number of \qquad
H: \qquad p, \qquad n , He : \qquad p, \qquad n

PRACTICE

What's the mass number?

mass number $=$ number of protons + number of neutrons

Atoms	Protons	Neutrons	Mass number
helium			
copper			
cobalt			
iodine			
germanium			

Atoms	Mass number	Atomic number	Neutrons
helium			
fluorine			
strontium			
zirconium			
uranium			6

Overall charge of an atom:

PRACTICE

1. Label the parts of the atom to the right. Include the following labels: proton, electron, neutron, nucleus.
2. What elements is represented by this diagram? How do you know?
3. What is the charge of this nucleus? What is the charge of this atom overall?
4. What is the mass of this atom?
5. Using a periodic table, look up titanium.
a. What is its atomic number?
b. How many protons does a titanium atom have?
c. How many electrons does it have?
6. What element has 78 protons?
7. What is the atomic mass of a sample of chlorine that has 19 neutrons?
8. What atom has 18 electrons?

PART B:ELEMENTS

How many neutrons are in a lithium atom?

What do you think the cube symbol in the upper right means?

Getting to Know Subatomic Particles:

Use your periodic table to complete the table below:
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Element } & \text { Symbol } & \begin{array}{c}\text { Atomic } \\
\text { Number }\end{array} & \begin{array}{c}\text { \# of } \\
\text { protons }\end{array} & \begin{array}{c}\text { \# of } \\
\text { electrons }\end{array} & \begin{array}{c}\text { Atomic } \\
\text { Mass }\end{array} & \begin{array}{c}\text { Rounded } \\
\text { Atomic } \\
\text { Mass }\end{array}
$$ \& \begin{array}{c}\# of

neutrons

(show

work)\end{array} \& Period\end{array}\right]\)| Oxygen |
| :---: |
| Helium |

Atomic structure

1. Use the vocabulary terms that follow to label the parts of an atom. Place the correct term on the line next to each part of the atom. You will not need to use all the terms.

- atom
- neutron
- proton
- electron
- nucleus
- shell

2. Complete the following table describing the three subatomic particles.

	Proton	Neutron	Electron
electric charge			
location in the atom			

Complete the table below by referencing a periodic table. The first row has been completed as an example.

	Chemical Symbol	Atomic Number	Atomic Mass	Mass Number	Hyphenated Notation of Most Common Isotope	\# of protons	\# of electrons	(Show work : Mass Number - Atomic \#)
Phosphorous	P	15	30.97	31	Phosphorous - 31	15	15	$31-15=16$
Aluminum								
Potassium								
Argon								
Lead								

Match each item with the correct statement:

-------- I. The smallest particle of an element that retains the properties of that element
2. A positively charged subatomic particle
3. A negatively charged subatomic particle
4. A subatomic particle with no charge
5. The central part of an atom containing protons and neutrons
A. PROTON
B. NUCLEUS
C. ATOM
D. ELECTRON
\qquad
each item with the correct statement:
Match each item with the correct statement:
-------- I. Atoms with the same number of protons but different numbers of neutrons
A. ATOMIC MASS
\qquad 2. Total number of protons and neutrons in the nucleus
B. MASS NUMBER
3. The weighted average of the masses of the isotopes of an element
C. ISOTOPE

Use the following diagram of an atom to answer questions 8 and 9 .

-
8. Which of the following is the structure labelled II in the diagram?
A. atom
B. proton
C. neutron
D. electron
9. Which of the following exists in energy levels?
A. I only
B. II only
C. III only
D. II and III only
10. What is the electrical charge of the nucleus of an atom?
A. neutral charge
B. positive charge
C. negative charge
D. It depends on the element
11. The nucleus of the atom contains which of the following subatomic particles?
A. electron
B. proton and neutron
C. proton and electron
D. proton, neutron, and electron

The Periodic Table...OF ELEMENTS!

- The periodic table is made up of \qquad
- An element is a \qquad that \qquad into anything simpler (if contains only \qquad kind of atom)
- Every element has its own unique \qquad and \qquad

Element	Symbol
Actinium	Ac
Aluminum	Al
Americium	Am
Antimony	Sb
Argon	Ar
Arseric	As
Astatine	At
Barium	Ba
Berkelium	Bk
Beryllium	Be
Bismuth	Bi
Boron	B
Bromine	Br
Cadmium	Cd
Calcium	Ca
Califomium	Cf
Carbon	C
Cerium	Ce
Cesium	Cs
Chlorine	Cl
Chromium	Cr
Cobalt	Co
Copper	Cu
Curium	Cm
Dubnium	Db
Dysprosium	Dy
Einsteinium	Es
Erbium	Er
Europium	Eu
Fermium	Fm
Fluorine	F
Francium	Fr
Gadolinium	Gd
Gallium	Ga
Germanium	Ge
Gold	Au
Hafrium	Hf
Helium	He
Holmium	Ho
Hyyrogen	H
Indium	In
Iodine	I
Inidium	Ir
Iron	Fe
Krypton	Kr
Larthanum	La
Lawrencium	Lr
Lead	Fb
Lithium	Li
Lutetium	Lu
Magnesium	Ms
Manganese	Mn
Mendelevium	Md

Element	Symbol
Mercury	Hg
Molybdenum	Mo
Neodymium	Nd
Neon	Ne
Nepturium	Np
Nickel	Ni
Niobium	Nb
Nitrogen	N
Nobelium	No
Osmium	Os
Oxygen	\bigcirc
Pallacium	Pd
Phosphorus	P
Platirum	Pt
Plutonium	Pu
Polorium	Po
Potassium	K
Praseodymium	Pr
Prome thium	Pr
Protactinium	Pa
Radium	Ra
Radon	Rn
Rhenium	Re
Rhodium	$\mathrm{R} h$
Rubidium	Rb
Rutherium	Ru
Rutherfordium	Rf
Samarium	Sm
Scandium	Sc
Selenium	Se
Silicon	Si
Siver	Ag
Sodium	Na
Strortium	Sr
Sulphur	S
Tartalum	Ta
Technetium	Tc
Tellurium	Te
Terbium	Tb
Thallium	TI
Thorium	Th
Thulium	Tm
Tin	Sn
Titanium	Ti
Tungsten	W
Urarium	U
V anadium	V
Xerom	Xe
Yterbium	Yb
Ytrium	Y
Zinc	Zn
Zirconium	Zr

PRACTICE

 country/continent?Examine the list of elements to the left. Note the different ways in which they were named. Add three examples to each of the following:
A. The symbol of some elements is just the first letter (always capitalized).
B. When the first letter had already been used, the first and second letter was used (second letter always lowercase).
C. When the first and second letters had been used, the first and the third were used (third letter always lowercase)..
D. Some elements were named before English became the language of science, so their symbols derive from their Latin names.

How about an element name related to a famous scientist?

CONFUSING ELEMENT SYMBOLS EXPLAINED

Most of the chemical symbols for elements in the periodic table make perfect sense; there are a small selection, however, that seem to bear no relation to their element's name. Here's a look at these rogue symbols, along with explanations of the reasons behind them.

On Earth about \qquad elements occur naturally (ex. \qquad). There are many elements that do not occur naturally but are synthesized (\qquad) in \qquad .

As you've seen each element has a unique \qquad and \qquad . The symbol is usually
\qquad or \qquad letters. The first letter is always \qquad and the remaining letters if there are any are \qquad . The names and symbols of the elements are
accepted and used by scientists all _. Many element names come from Latin words, others are named for countries or to honour scientists of note.

About \qquad of the elements found in the periodic table are metals.

Metals.
Non-Metals

Write the symbol for the following elements.

Oxygen	Hydrogen	Chlorine	Potassium
Phosphorus	Iodine	Magnesium	Nitrogen
Fluorine	Manganese	Iron	Carbon
Copper	Calcium	Zinc	Cobalt
Sodium	Molybdenum	Sulphur	Mercury

PRACTICE

Write the name of the following elements.

As	Rn	Pb	Al
Cu	K	Ba	Ag
He	Pu	Ne	Sr
Si	Am	U	Au
Sn	Ra	Pt	Ge

THINKING AHEAD ABOUT COMPOUNDS \& CHEMICAL FORMULAE

As you know a compound is a p
S \qquad that is made up of \qquad or more different types of atoms.

These different types of atoms come from different types of e \qquad .

Na Cl
$\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$

Elements combine to form \qquad ,
something that we will look at later in this course.

1. For each of the following molecules, identify the kind of atoms and the number of each. The first one is done for you.

Chemical Formula	Kinds and Number of Atoms in Each Molecule
CaCO_{3}	1 atom calcium, 1 atom carbon, 3 atoms oxygen
AgBr	
PbS_{2}	
MgCl_{2}	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	
PbCl_{4}	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	
$\mathrm{AlP}^{\mathrm{NH}_{4} \mathrm{OH}}$	
NaHSO_{4}	
PbSO_{3}	

2. Each particle of the following contains the atoms listed. Write the formula of each compound. The first one is done for you.
3. One copper atom and one sulphur atom

CuS
2. One nitrogen and three hydrogen atoms
3. Two hydrogen and one sulphur atom
4. One hydrogen, one nitrogen and three oxygen atoms
5. Two potassium, one carbon and three oxygen atoms
6. Two aluminium and three oxygen atoms
7. One iron, one phosphorus and four oxygen atoms
8. One nitrogen, four hydrogen, one carbon and three oxygen atoms
9. One potassium, one chlorine and three oxygen atoms
10. Six carbons, twelve hydrogen and 6 oxygen atoms
11. One carbon, three hydrogen, one oxygen and one hydrogen

ACTIVITY:

 Elements and the Periodic Table
Activity 1: Comparing Properties of Elements

An element is a substance that cannot be broken down into simpler substances by heating it or causing it to react with other chemicals. The smallest unit of an element is a tiny particle called an atom. Each different element has a unique atom. Everything around you is made from incredibly small atoms of one or more of these elements.

A pure sample of an element contains many atoms of the same type. For example, the millions of iron atoms that make up a piece of iron metal are of the same type and have the characteristics of iron. Iron atoms, however, are very different from atoms of other elements, such as gold or oxygen. All elements have unique properties. It is atoms of an element that determine its properties.

Most elements are rarely found in pure form. Atoms of different elements tend to combine chemically, or react, with each other. Scientists say these elements are reactive. When elements react, they can form substances called compounds. One familiar compound is water, a combination of two hydrogen atoms and one oxygen atom.

Challenge: How can elements be grouped based on their physical and chemical properties and how are they related to compounds?

Materials: Element Cards, Element Family Cards

Part A: Classifying Elements

1. With your partners, spread the Element Cards out on a table. Each card provides information about an element. Two categories might be unfamiliar, reactivity (how likely the element is to react chemically with other elements) and number of bonds to hydrogen (the number of hydrogen atoms that usually combine chemically with this element).
2. Examine the information on each card carefully, noting similarities and differences among elements.
3. Working together, sort the elements into at least three groups. Each group of elements should have at least two similar properties.
4. List the groups you have made and the common features of each group. Be sure to record all of the elements in each group.

Group	Elements in Group	Common Features of the Group
1		
2		
3		
4 (if needed)		

Part B: Comparing Classification Systems

5. Your group will receive four Element Family Cards. Each card describes a group of elements called a family. Based on the information on the Family Cards, place each element under a Family Card.
6. Arrange the elements in each family in order from lowest atomic mass at the top to highest atomic mass at the bottom. Place the column on a half sheet of coloured paper.
7. Line up the four columns of elements to form a table, so that the elements are in columns and rows. Use the atomic masses of the elements to decide on an order for the columns.
8. Record your new classification system, complete with:

- Family names
- Similar properties within each family
- Elements in each family in order of increasing atomic mass

| Family
 Name | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Similar
 Properties | | | | | |

Analysis:

1. Which of the properties listed on the Element Cards are:
a. Physical properties?
b. Chemical properties?
2. How did your first classification system compare to the second classification with the Element Family Cards?
3. In what ways could grouping elements help scientists understand their properties?
4. Use the table of elements you constructed in step 8 above to find the family or families of elements that are:
a. Not usually reactive:
b. Highly reactive:
c. All metals:
d. All solids:
e. All gases:
5. The element strontium (Sr) has properties that make it belong in the Alkaline Earth Metals family, directly below calcium (Ca) on your table of elements. Design an Element Card for strontium that shows its symbol, name and the properties you predict it will have:

PART C: THE PERIODIC TABLE

History of Atomic Theory

- The ancient Greeks believed that there were four types of matter:
\qquad .
- Democritus (400BC) proposed the idea of \qquad and that they are \qquad . Science though,
\qquad this idea and it took hundreds of years to pass before Democritus' idea was accepted.
- Skipping ahead to the \qquad , scientists had identified

\qquad , but there was no way of \qquad them.
- Some tried to classify them based on \qquad or by how they
\qquad with other elements.
- None of these worked for \qquad

The Periodic Table of Elements

- In 1867, Dmitri Mendeleev wrote down the characteristics of all the known elements on cards and arranged them into a pattern that made sense.
- When elements were listed by \qquad he noticed that certain \qquad seemed to repeat with a
 regular pattern.
- He put them in \qquad , and when properties repeated he started a

The Early Periodic Table

- Horizontal rows (\qquad) has masses increasing left to right
- Vertical columns (\qquad) have common properties
- Gaps were left when properties did not match properties
- Elements were predicted to fill \qquad

The Current Periodic Table

- Mendeleev's table had \qquad
- His \qquad evolved through the work of others
- Now, elements are ordered by \qquad , not \qquad
- The table in use today reached its current form in the \qquad

Properties of Elements

- All elements are different from each other, and have \qquad - These \qquad can be used in identifying different elements
- Elements with similar properties are often \qquad
- One common grouping is \qquad

Metals, Non-Metals and Metalloids

- Metals are found on the left of the periodic table (except \qquad), non-metals on the right, and \qquad in between. The \qquad divides them.

H		- metals metalloids non-metal															He
Li	Be											B	C	N	0	F	Ne
Na	Mg											AI	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn

Metals: :

- \qquad shiny,
ductile, malleable, magnetic, and good conductors of both
\qquad
- Most are \qquad at room temperature (exception: \qquad

Metalloids:

- can be shiny or dull, often conduct electricity poorly, but do not conduct
\qquad
- most are solids at
\qquad temperature

Non-Metals:

- Dull, not ductile, \qquad —, non-magnetic, and \qquad conductors of heat and electricity
- Some are solids, some are liquids and some are gases at
\qquad temperature

ASSIGNMENT \#3: Getting to know The Periodic Table

This assignment is to be completed below in the space provided.

You will need to research the names and locations of these periodic table groups/families

You will also learn where the metals, non-metals and metalloids are on your periodic table.

Be sure to use ARROWS to show the direction of Groups \& Periods!

You DO NOT have to write in elements symbols or atomic numbers.

- Alkali Metals: Red
- Alkali Earth Metals: Orange
- Transition Metals: Yellow
- Metalloids: Green
- Halogens: Blue
- Actinides/Lathanides: Purple
- Metals: Stripe
- Metalloids: Outline Black
- Non-Metals: Checkerbox
- Arrow showing direction of the Periods
- Arrow showing direction of Groups
- Number the Groups
- Number the Periods

PERIODIC TABLE OF ELEMENTS

Fill in the following table.

Property	Metals	Non-Metals	Metalloids
Colour/Lustre			
Ductile			
Malleable			
Magnetic			
Conductor			

Other Important Groups to Know

- You should be able to \qquad these groups on the periodic table, and know their properties.

Group 1 (without H) - Alkali Metals

- Highly reactive \qquad (reactivity increases with \qquad ,
so as you move \qquad the group they become more reactive)
- Burn spontaneously in oxygen and in \qquad
- \qquad solids at room temperature
\qquad is part of many batteries, \qquad is part of
fertilizers

Group 2 - Alkaline Earth Metals

- \qquad metals that will burn in oxygen and water if
- Solids at \qquad temperature

Family 18 - Noble Gases

- Are the most stable and \qquad elements in the table
- All are colourless \qquad at room temperature
- They are used inside lights to produce different \qquad (e.g. neon signs)

PRACTICE Families of elements

Use the simplified periodic table shown above to answer questions 1 to 12. To which region does each element or family belong? Place the letter corresponding to the shaded region on the blank line. You can use regions more than once.

You can use the periodic table on page 201 to help you answer these questions.

1. helium \qquad
2. lithium \qquad
3. fluorine \qquad
4. beryllium \qquad
5. halogens \qquad
6. noble gases \qquad
7. alkali metals \qquad
8. alkaline earth metals \qquad
9. non-metallic elements that are strongly reactive \qquad
10. metallic elements that are strongly reactive \qquad
11. metallic elements that are reactive \qquad
12. non-metallic elements that are very unreactive \qquad

ASSIGNMENT \#4: Periodic Table Review pg 26-29
This assignment is to be completed below in the space provided.

1. The left-hand column in the chart below contains statements about various elements. Write the name and symbol for the element each statement refers to.

Description of Element	Name of Element	Symbol
It is the only gas in group 1.		
This inert gas is in period 3.		
There is no heavier member of group 2.		
This element is the lightest of the halogens.		
Group 16 contains this reactive non-metal gas.		
The atomic mass of this metal is about 56.		
Period 6 contains this group 2 metal.		
This is the only liquid halogen.		
This metallic element is liquid at room temperature.		
Photosynthesis produces this element.		
This is the lightest element in period 2.		

2. For each group, decide which element does not belong with the rest. Explain why.

a.	Si	Ge	Sn	P
b.	Ti	S	Pt	Fr
c.	N	C	Sn	Xe
d.	Sr	F	Cd	I

\qquad
\qquad
\qquad
d. $\mathrm{Sr} \mathrm{F} \quad \mathrm{Cd} \mathrm{I}$ \qquad
3. Which one of the elements does not have the properties held by the rest of the group?
a. Cs.
Ba
K
Na
b. $\mathrm{Ca} \mathrm{Cd} \mathrm{Hg} \quad \mathrm{Zn}$

Review Questions.

1. What is a family?
2. What is a period?
3. What is the symbol for the following elements?
a. Magnesium \qquad
b. Potassium \qquad
c. Iron \qquad
d. Copper
4. What are the names of the following elements?
a. C
b. Cl
c. Au
d. Sr
5. In what period are the following elements found?
a. He
b. Ge
c. Rb
d. I
6. In what group (family name) are the following elements found?
a. Sulfur
b. Ca
c. Iodine
d. Fe
7. List two atoms from each of the following groups:
a. Halogen
b. Noble Gas
c. Alkali metal
d. Alkaline Earth Metal \qquad
8. What is the symbol for silver?
9. Ni is the symbol for what element?
10. State the period number(s) that contain only eight elements: \qquad

Using the periodic table

Vocabulary	
average atomic mass	metalloids
atomic number	multiple ion charge
electrons	noble gases
families	non-metals
good	periodic table
halogens	periods
ions	poor
ion charge	properties
metals	

Use the terms in the vocabulary box to fill in the blanks. You can use each term more than once. You will not need to use every term.

1. The \qquad organizes the elements according
to their physical and chemical \qquad .
2. The periodic table is divided into seven horizontal rows called \qquad and 18 vertical columns called \qquad .
3. \qquad appear on the left side of the periodic table.
These elements are \qquad conductors of heat and electricity.
4. \qquad
These elements are \qquad conductors of heat and electricity.
5. The \qquad form a zigzag staircase arrangement on the periodic table. These elements have properties similar to both
\qquad and \qquad .
6. The \qquad refers to the number of protons that an atom has in the nucleus.
7. The \qquad is the weighted average of the masses of the atoms of an element.
8. $A(n)$ \qquad is an electric charge that forms on an atom when it gains or loses electrons.
9. Some metals, like platinum and cobalt, form \qquad in more than one way. In other words, they have a(n) \qquad .

The periodic table and chemical properties

Match each Term on the left with the best Descriptor on the right. Each Descriptor may be used only once.	
Term	Descriptor
1.__ halogens	A. most reactive metals B. most reactive non-metals 2._ have properties of both metals and non-metals 3.__ alkali metals gases D. most unreactive elements E. includes beryllium and magnesium
alkaline earth	

Circle the letter of the best answer.

5. What is the name of a horizontal row in the periodic table?
A. column
B. family
C. period
D. group
6. Which of the following are metalloids?

I.	silicon
II.	boron
III.	neon

A. I and II only
B. I and III only
C. II and III only
D. I, II, and III

Use the following diagram to answer questions 7 and 8.

30	$2+$
$\mathbf{Z n}$	
Zinc	
65.4	

7. What does the " 30 " refer to?
A. ion charge
B. average atomic mass
C. atomic number
D. family number
8. What does the " $2+$ " refer to?
A. ion charge
B. average atomic mass
C. atomic number
D. family number
9. To which of the following groups does oxygen belong?
A. gas
B. metal
C. metalloid
D. non-metal
10. Which of the following is the same as the atomic number of an element?
A. number of protons
B. number of neutrons
C. number of electrons
D. number of ion charges

PART D: THE BOHR MODEL

Using Standard Atomic Notation

- On the upper left of the element symbol is the atomic
\qquad (rounded to the nearest whole number)
- On the lower left of the element symbol is the atomic

\qquad (number of protons).

Ex. Consider the element gold. Its symbol is Au. Its mass number is 197 and its atomic number is 79.
Written in standard atomic notation it becomes:
197
79

PRACTICE

Write the standard atomic notation for germanium, uranium, and colbalt.

Modeling Atoms with Bohr Diagrams

- Atoms are so \qquad that in order to study them, we need to create \qquad
- The current atomic model is known as the \qquad
- Electrons are always moving in 3D space around the \qquad
- The model that we will learn today represent the atom at \qquad
- It's a way of representing the \qquad of electrons in the "cloud"
- It's important to remember that an atomic model is a \qquad version of an atom, and it's completely \qquad in terms of \qquad

Bohr Diagrams

- A Bohr diagram is a diagram that shows how many \qquad are in each shell surrounding the nucleus.
- Named in honour of \qquad , a Danish physicist who developed several models for showing the arrangement of electrons in atoms.

- There are three main background questions to explore before we start drawing Bohr diagrams.

1. \qquad of a Bohr Diagram

2. How does an Electron's \qquad Correspond to its
\qquad

- Imagine climbing a \qquad . As you go up each rung, you gain more and more \qquad
- This is similar to the way in which electrons have
\qquad energy as they orbit \qquad from
 the nucleus
- The shells of an atom are named \qquad , \qquad , \qquad , and
\qquad going from \qquad to furthest from the

3. How do \qquad Fill the \qquad ?
 fill the shell elements, For the first $\overline{\text { full }}$ when it has
the M shell is full when electrons.

If there are remaining electrons, they fill the ___ shell (level 4). The \mathbf{N} shell is full when it has

Drawing a Bohr Diagram

1. Write the element's \qquad with the \qquad at the TOP left and the
\qquad at the BOTTOM left
2. \qquad the number of \qquad in the atom. Write the number of protons $\left(\mathrm{p}^{+}\right)$and neutrons $\left(\mathrm{n}^{\mathrm{O}}\right)$ as the \qquad
3. \qquad : How many electrons does the \qquad atom have?
4. \qquad the K shell. Fill the K shell with the first \qquad electrons. Make your electrons nice and \qquad !
5. Continue drawing each shell and \qquad with electrons until you have accounted for all the atom's electrons.

PRACTICE

In the diagram below, identify the elements by the Bohr model diagrams are shown. Write the symbols of the elements in the spaces provided.

PART E: VALEMCE ELECTRONS

- The electrons in the \qquad shell. These are the electrons that participate in chemical \qquad .
- Valence electrons can be shared or \qquad by another atom.
- Noble gases do not react unless under \qquad conditions. This is because their valence shell is \qquad .
- An atom that has lost valence electrons is a \qquad ion.
- An atom that has gained valence electrons is a \qquad ion.

PRACTICE

For the following Bohr diagrams, answer the following questions:

Number of protons \qquad Number of electron shells \qquad
Number of electrons \qquad Number of valence electrons \qquad

Ion or Atom \qquad

Number of electron shells \qquad
Number of valence electrons \qquad

Ion or Atom \qquad

Number of protons
Number of electrons \qquad
Number of electron shells \qquad
Number of valence electrons \qquad

Ion or Atom \qquad

The following Bohr model diagram represents an oxygen atom.
Examine the diagram, then answer the following questions:
a) Why is this not a stable electron arrangement?

c) Use a different colored pen to adjust the diagram so that it shows a stable electron arrangement. For each problem, write the name of the Bohr model in the boxes below.
You may need to reference a periodic table to help you.

Use the innermost circle as the nucleus, and fill the electron shells with the correct number of electrons for each of the first 20 elements in the Periodic Table. eg. Hydrogen has been completed for you as an example.

1. What is the pattern between the number of valence electrons and the group number of the periodic table?
2. What is the pattern between the number of electron shells and the period number of the periodic table?

Drawing Bohr model diagrams

1. Refer to the Bohr model chart ABOVE to help you complete the following table. Some answers are provided for you. (Hint: Remember that the maximum number of electrons in the first three shells is 2,8 , and 8 .)

Atom/ion	Atomic number	Number of protons	Number of electrons	Number of electron shells
rieor atorir	10	10	10	2
fluorine atom	9			
scodium aะom				
argon ciom				
chlorine atom				
potassium atom				

2. Use the table above to draw the Bohr model diagram for the following atoms and ions.

Argon atom	Chlorine atom	Potassium atom

Use your periodic table to answer the following.

	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element

These four elements are all in the same horizontal row (period) of the periodic table. What is the same about electron shells for elements in the same period?

What is different about the electrons in the outer shell for elements in the same period?

PARTF:PERIODIC TABLE TRENDS

In chemistry the term \qquad refers to a regular pattern in the properties of elements based on their atomic structure.

This is the pattern that Mendeleev predicted. When the pattern repeated, he began a new \qquad .

The periodic table is a powerful tool for analyzing trends in \qquad and \qquad .

ATOMIC SIZE TRENDS:

Observe the sizes of the atoms in each group and period shown in the diagram below. Do you see a pattern?

1. Atomic size \qquad moving DOWN a group/column.

- as you move down a \qquad , elements have atoms with \qquad energy
\qquad .
- the \qquad the number of electron shells, the \qquad away from the nucleus the valence electrons are
- if the electrons are farther away, the atom is \qquad .

2. Atomic size \qquad moving LEFT to RIGHT across a period/row.

- elements have \qquad numbers of electrons in their \qquad shells as you move LEFT to RIGHT.
- as the number of electrons increases, so does the number of \qquad in the nucleus.
- the attraction between the n \qquad valence electrons and the
p \qquad nucleus is very strong.
- with each electron added, the outer shell is pulled \qquad to the nucleus and the atomic size \qquad

REACTIVITY TRENDS:

Compare what happens when potassium (A) and sodium (B) are added to water:

You can see that the reaction is \qquad vigorous and violent in 'A', water + potassium.

Why is this the case?
What is similar about potassium and sodium? \qquad
What is different about potassium and sodium? \qquad

- Because \qquad valence electrons are farther away from the nucleus than the electrons in a \qquad atom, the attraction to the nucleus is \qquad .
- Electrons further from the nucleus require \qquad energy (are easier) to remove.
- The adding and removing of electrons is what is involved in c \qquad r \qquad .
- This is why we would say that \qquad is more reactive than \qquad .

This pattern repeats throughout the periodic table with the exception of the noble gases.

- the noble gases have a FULL valence shell, they are stable and \qquad

PRACTICE

Non-metal Reactivity Increases

1. Explain why atoms get larger down a group on the periodic table:
2. Explain why atoms get smaller from LEFT to RIGHT across a periodic table:
3. Why is an alkali metal MORE reactive than an alkaline-earth metal in the same period?

ASSIGNMENT \#6 :Bohr Model Review Worksheet pg 40
This assignment is to be completed below in the space provided.

Bohr Model Review Worksheet

Use the description sheet and the periodic table to help you complete the following Bohr models.

1. How many electrons can each shell hold?
a. $1^{\text {st }}=$ \qquad
b. $2^{\text {nd }}=$ \qquad
c. $3^{\mathrm{rd}}=$ \qquad

Element	Atomic $\#$	Atomic Mass	Protons	Neutrons	Electrons	Bohr Model
Carbon	6		6	6		
Hydrogen	1	1				
Lithium	3					
Magnesium						

