1. What is the pH at the transition point for an indicator with a K_a of 2.5×10^{-4} ?

- A. 2.5×10^{-4}
- B. 3.60
- C. 7.00
- D. 10.40
- 2. What volume of 0.100 M NaOH is required to completely neutralize 15.00 mL of 0.100 M H₃PO₄?
 - A. 5.00 mL
 - B. 15.0 mL
 - C. 30.0 mL
 - D. 45.0 mL
- 3. What is the pH of the solution formed when 0.060 moles NaOH is added to 1.00 L of 0.050 M HC1?
 - A. 2.00
 - B. 7.00
 - C. 12.00
 - D. 12.78
- 4. Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?

- 5. A gas which is produced by internal combustion engines and contributes to the formation of acid rain is
 - A. H₂
 - B. O₃
 - C. CH₄
 - D. NO₂

6. Which of the following titrations will always have an equivalence point at a pH > 7.00?

- A. weak acid with a weak base
- B. strong acid with a weak base
- C. weak acid with a strong base
- D. strong acid with a strong base
- 7. What is the approximate K_a value for the indicator chlorophenol red?
 - A. 1×10^{-14}
 - B. 1×10^{-8}
 - C. 1×10^{-6}
 - D. 1×10^{-3}
- 8. A buffer solution may contain equal moles of
 - A. weak acid and strong base.
 - B. strong acid and strong base.
 - C. weak acid and its conjugate base.
 - D. strong acid and its conjugate base.
- 9. A gas which is produced by burning coal and also contributes to the formation of acid rain is
 - A. H₂
 - B. O₃
 - C. SO_2
 - D. C_3H_8
- 10. What is the pH of the solution formed when $0.040 \text{ mol NaOH}_{(s)}$ is added to 2.00 L of 0.020 M HCl?
 - A. 0.00
 - B. 1.40
 - C. 1.70
 - D. 7.00

11. Which of the following applies at the transition point for all indicators, HInd?

A.
$$[HInd] = [Ind^{-}]$$

B.
$$\left[\text{Ind}^{-} \right] = \left[\text{H}_3 \text{O}^{+} \right]$$

C.
$$\left[H_{3}O^{+}\right] = \left[OH^{-}\right]$$

D.
$$[HInd] = [H_3O^+]$$

12. Identify the indicator that has a K_a of 1.6×10^{-7} ?

- A. methyl red
- B. thymol blue
- C. phenolphthalein
- D. bromthymol blue
- 13. Which of the following acid solutions would require the smallest volume to completely neutralize 10.00 mL of 0.100 M NaOH ?
 - A. 0.100 M HCl
 - B. 0.100 M H₃PO₄
 - C. $0.100 \text{ M H}_2\text{C}_2\text{O}_4$
 - D. 0.100 M CH₃COOH
- 14. What is the pH of the solution formed when $0.040 \text{ mol NaOH}_{(s)}$ is added to 1.00 L of 0.050 M HCl ?
 - A. 1.30
 - B. 1.40
 - C. 2.00
 - D. 7.00

15. Which of the following titrations will have an equivalence point with a pH less than 7.00?

- A. H_2SO_4 with NH_3
- B. HNO₃ with LiOH
- C. H_3PO_4 with KOH
- D. HCOOH with NaOH

16. Which of the following graphs describes the relationship between pH of a buffer solution and a volume of HCl added to the buffer?

17. Which of the following ions will produce an acidic solution when added to water?

- A. O^{2–}
- B. Na⁺
- C. NH_4^+
- D. HCO₃⁻

18. What is the $[H_3O^+]$ at the transition point for an indicator with a K_a of 3.9×10^{-8} ?

- A. 1.0×10^{-14} M B. 3.9×10^{-8} M C. 1.0×10^{-7} M D. 2.6×10^{-7} M
- 19. What is the pH of the solution formed when 0.040 mol KOH is added to 2.00 L of 0.020 M HCl ?
 - A. 0.00
 - B. 7.00
 - C. 12.00
 - D. 12.30

20. The pH of normal rainwater is a result of the presence of dissolved

- A. SO₂
- B. CO₂
- C. NO₂
- D. ClO_2

21. What colour would 1.0 M HCl be in an indicator mixture consisting of phenol red and thymolphthalein?

- A. red
- B. blue
- C. yellow
- D. colourless
- 22. During a titration, what volume of 0.500 M KOH is necessary to completely neutralize 10.0 mL of 2.00 M CH₃COOH ?
 - A. 10.0 mL
 - B. 20.0 mL
 - C. 25.0 mL
 - D. 40.0 mL
- 23. Which indicator has a $K_a = 1.0 \times 10^{-6}$?
 - A. neutral red
 - B. thymol blue
 - C. thymolphthalein
 - D. chlorophenol red
- 24. Acid is added to a buffer solution. When equilibrium is reestablished the buffering effect has resulted in $[H_3O^+]$
 - A. increasing slightly.
 - B. decreasing slightly.
 - C. increasing considerably.
 - D. decreasing considerably.
- 25. A buffer solution will form when 0.10 M NaF is mixed with an equal volume of
 - A. 0.10 M HF
 - B. 0.10 M HCl
 - C. 0.10 M NaCl
 - D. 0.10 M NaOH

26. Which of the following will dissolve in water to produce an acidic solution?

- A. CO₂
- B. CaO
- C. MgO
- D. Na₂O

27. Which of the following will dissolve in water to produce an acidic solution?

- A. CO₂
- B. CaO
- C. MgO
- D. Na₂O

28. The complete neutralization of 15.0 mL of KOH requires $0.025 \text{ mol } H_2SO_4$. The [KOH] was

- A. 1.50 M
- B. 1.67 M
- C. 3.33 M
- D. 6.67 M

29. What is the $[H_3O^+]$ at the equivalence point for the titration between HBr and KOH ?

- A. $1.0 \times 10^{-9} \text{ M}$
- B. $1.0 \times 10^{-7} \text{ M}$
- C. 1.0×10^{-5} M
- D. 0.0 M
- 30. Which of the following would form a buffer solution when equal moles are mixed together?
 - A. HCl and NaCl
 - B. HCN and NaCN
 - C. KNO₃ and KOH
 - D. Na_2SO_4 and NaOH

31. Which of the following oxides dissolves to form a solution with a pH greater than 7 ?

- A. SO₂
- B. CO₂
- C. N₂O
- D. K₂O

32. The pH of acid rain could be

- A. 5.0
- B. 7.0
- C. 9.0
- D. 11.0

33. At pH = 4.0, methyl red solution will be

- A. red and [HInd] > $[Ind^{-}]$
- B. red and [HInd] < [Ind⁻]
- C. yellow and $[HInd] > [Ind^-]$
- D. yellow and $[HInd] < [Ind^-]$
- 34. Methyl red is orange in a 0.10 M solution of an acid. The acid could be
 - A. HI
 - B. HCl
 - C. HCN
 - D. H₂SO₄
- 35. How many moles of KOH are necessary to completely neutralize 42.0 mL of 3.00 M HCl?
 - A. 0.0630 moles
 - B. 0.126 moles
 - C. 0.252 moles
 - D. 3.00 moles
- 36. At the equivalence point, the titration of HCl with NH_3 will form a solution which is
 - A. basic with pH > 7.
 - B. acidic with pH < 7.
 - C. acidic with pH > 7.
 - D. neutral with pH = 7.
- 37. Which of the following could be added to an equal number of moles of $NaCH_3COO$ to prepare a buffer solution?
 - A. HCl
 - B. HNO₃
 - C. NaOH
 - D. CH₃COOH

- ^{38.} Which of the following equations describes the reaction that occurs when MgO is added to water?
 - A. MgO + H₂O \rightarrow Mg(OH)₂
 - B. MgO + H₂O \rightarrow MgO₂ + H₂
 - C. MgO + H₂O \rightarrow MgH₂ + O₂
 - D. $2MgO + 2H_2O \rightarrow 2MgOH + H_2 + O_2$
- 39. Which would produce a yellow solution at a pH = 4.0?
 - A. methyl red
 - B. methyl violet
 - C. indigo carmine
 - D. chlorophenol red
- 40. How many moles of NaOH are required to react completely with 100.0 mL of 2.5 M HNO₃?
 - A. 0.0063 mol
 - B. 0.25 mol
 - C. 2.5 mol
 - D. 250 mol
- 41. The net ionic equation for the reaction between HCl and KOH is
 - A. $H^+ + OH^- \rightleftharpoons H_2O$
 - B. HCl + KOH \rightleftharpoons H₂O + KCl
 - C. $H^+ + Cl^- + K^+ + OH^- \rightleftharpoons H_2O + KCl$
 - D. $H^+ + Cl^- + K^+ + OH^- \rightleftharpoons H_2O + K^+ + Cl^-$
- 42. Which of the following titrations would have a pH > 7 at the equivalence point?
 - A. HI with KOH
 - B. HClO₄ with NH₃
 - C. HCl with $Sr(OH)_2$
 - D. HCOOH with NaOH
- 43. A buffer can be made from equal moles of
 - A. HCl and NaCl
 - B. HCN and KOH
 - C. HNO_3 and NH_3
 - D. CH₃COOH and NaCH₃COO

- 44. Which of the following dissolves in water to produce a basic solution?
 - A. O₂
 - B. SO_2
 - C. NO₂
 - D. MgO

45. The pH at which an indicator changes colour is known as its

- A. standard point.
- B. transition point.
- C. equivalence point.
- D. stoichiometric point.
- 46. An indicator is blue at a pH of 12.0 and colourless at a pH of 1.0 . Identify the indicator and determine its K_a value.

	Indicator	K _a
A.	thymolphthalein	1×10^{-10}
B.	thymolphthalein	3×10^{-7}
C.	bromthymol blue	2×10^{-7}
D.	bromthymol blue	3×10^{-7}

- 47. A 10.0 mL sample of H_2SO_3 is completely neutralized by titration with 18.6 mL of 0.10 M NaOH . Calculate the concentration of the acid.
 - A. 0.093 M
 - B. 0.19 M
 - C. 0.37 M
 - D. 0.74 M
- 48. A common source of NO_2 is
 - A. a fuel cell.
 - B. a lead smelter.
 - C. an aluminum smelter.
 - D. an automobile engine.

49. The pH at the stoichiometric point for the complete neutralization of a strong acid by a weak base will be

- A. equal to 7.0
- B. equal to 7.2
- C. less than 7.0
- D. greater than 7.2

50. A buffer solution can be prepared by dissolving equal moles of

- A. a weak base and a strong base.
- B. a weak acid and its conjugate base.
- C. a strong base and its conjugate acid.
- D. a strong acid and its conjugate base.
- 51. The chemical indicator bromthymol blue changes from yellow to blue as a result of the addition of
 - A. 1.0 M HCl
 - B. 1.0 M HNO₂
 - C. $1.0 \text{ M K}_2 \text{CO}_3$
 - D. $1.0 \text{ M NH}_4\text{Cl}$
- 52. A chemical indicator has a $K_a = 1.0 \times 10^{-6}$. Determine the identity of this indicator.
 - A. phenol red
 - B. thymol blue
 - C. phenolphthalein
 - D. chlorophenol red
- 53. Pure sodium hydrogen phthalate is used to standardize a solution of NaOH for use in an acid-base titration. What term is used to describe the sodium hydrogen phthalate?
 - A. titrant base
 - B. standard buffer
 - C. equivalent base
 - D. primary standard
- 54. Calculate the volume of 0.500 M NaOH required to completely neutralize 25.0 mL of 0.450 M H₂SO₄.
 - A. 9.00 mL
 - B. 11.3 mL
 - C. 22.5 mL
 - D. 45.0 mL

55. Which of the following is the net ionic equation for the neutralization of CH_3COOH with NaOH ?

A.
$$CH_3COO^-_{(aq)} + OH^-_{(aq)} \rightarrow CH_3COOH_{(aq)} + O^{2-}_{(aq)}$$

B.
$$CH_3COOH_{(aq)} + OH_{(aq)} \rightarrow H_2O_{(\ell)} + CH_3COO_{(aq)}$$

C.
$$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow NaCH_3COO_{(aq)} + H_2O_{(\ell)}$$

D.
$$CH_3COO^-_{(aq)} + H^+_{(aq)} + Na^+_{(aq)} + OH^-_{(aq)} \rightarrow Na^+_{(aq)} + CH_3COO^-_{(aq)} + H_2O_{(\ell)}$$

56. The pH of normal rainwater is

- A. less than 7.0 due to dissolved $SO_{2(g)}$
- B. less than 7.0 due to dissolved $CO_{2(g)}$
- C. greater than 7.0 due to dissolved $CO_{2(g)}$
- D. equal to 7.0 due to dissolved N_2 and O_2
- 57. Consider the following equilibrium for the chemical indicator phenol red, HInd, at a pH = 7.3 (orange).

When some NaOH is added, what stress is imposed on the equilibrium and what colour change occurs?

	Stress	Indicator Colour Change
A.	increased $\left[H_{3}O^{+}\right]$	turns red
B.	decreased $\left[H_3O^+\right]$	turns red
C.	increased $\left[H_3O^+\right]$	turns yellow
D.	decreased $\left[H_3O^+\right]$	turns yellow

- 58. A chemical indicator has a $K_a = 2.5 \times 10^{-5}$. Determine the pH at the transition point.
 - A. 2.30
 - B. 4.60
 - C. 7.00
 - D. 9.40