- 1. Which of the following are general properties of bases in aqueous solution?
 - A. feel slippery and increase $[H_3O^+]$
 - B. turn litmus red and accept a proton
 - C. conduct electricity and turn litmus blue
 - D. feel slippery and react with Au to produce $H_{2(g)}$
- 2. The conjugate base of $H_2PO_4^-$ is

A. PO_4^{3-} C. HPO_4^{2-}

- B. HPO_4^- D. H_3PO_4
- 3. The electrical conductivities of 0.10 M solutions of NaCl, HCN and HNO₂ are measured. The order by conductivity from highest to lowest is (2 ma)
 - A. $NaCl > HNO_2 > HCN$
 - B. $HCN > HNO_2 > NaCl$
 - C. $NaCl > HCN > HNO_2$
 - D. $HNO_2 > HCN > NaCl$
- 4. Which of the following acids has the weakest conjugate base?
 - A. HIO₃
 - B. HNO₂
 - C. H₃PO₄
 - D. CH₃COOH
- 5. When 10.0 mL of 0.10 M HCl is added to 10.0 mL of water, the concentration of H_3O^+ in the final solution is
 - A. 0.010 M
 - B. 0.050 M
 - C. 0.10 M
 - D. 0.20 M

6. Which of the following chemical species are amphiprotic in aqueous solution?

I.	F^{-}	A. I only.
II.	NH4 ⁺	B. II only. C. III only.
III.	HPO ₄ ²⁻	D. II and III only.

- 7. A solution is prepared by mixing 1.50×10^{-3} mol HCl with 3.00×10^{-3} mol KOH. Calculate the moles of OH⁻ present after mixing.
 - A. 0 mol
 - B. 1.50×10^{-3} mol
 - C. 3.00×10^{-3} mol
 - D. 4.50×10^{-3} mol

8. Calculate the pH in a 0.020 M solution of $Sr(OH)_2$.

- A. 1.40
- B. 1.70
- C. 12.30
- D. 12.60
- 9. The K_b value for HPO_4^{2-} is
 - A. 2.2×10^{-13}
 - B. 6.2×10^{-8}
 - C. 1.6×10^{-7}
 - D. 7.5×10^{-3}

10. Which of the following 1.0 M salt solutions is acidic?

- A. BaS
- B. NH₄Cl
- C. $Ca(NO_3)_2$
- D. NaCH₃COO
- 11. Which of the following represents the hydrolysis reaction that occurs in a solution of $K_2C_2O_4$?
 - A. $K_2C_2O_4 \rightleftharpoons 2K^+ + C_2O_4^{2-}$
 - B. $K^+ + 2H_2O \rightleftharpoons KOH + H_3O^+$
 - C. $C_2O_4^{2-} + H_2O \rightleftharpoons HC_2O_4^{-} + OH^{-}$
 - D. $K_2C_2O_4 + H_2O \rightleftharpoons K_2CO_3 + CO_2 + H_2$
- 12. Which of the following tests could be used to distinguish between 1.0 M HCl and 1.0 M NaOH?

I.	electrical conductivity	A.	III only
II.	reaction with zinc to produce hydrogen gas		I and II only II and III only
III.	colour of the indicator phenolphthalein		I, II and III

- 13. An Arrhenius base is defined as a compound that
 - A. accepts OH⁻ in solution.
 - B. releases OH⁻ in solution.
 - C. accepts protons in solution.
 - D. donates protons in solution.
- 14. In which one of the following equations are the Brønsted-Lowry acids and bases all correctly identified?

	Acid	+	Base	$\stackrel{\longrightarrow}{\leftarrow}$	Base	+	Acid
A.	H_2O_2	+	SO_{3}^{2-}	$\stackrel{\rightarrow}{\leftarrow}$	HO_2^-	+	HSO ₃ ⁻
В.	H_2O_2	+	SO ₃ ²⁻	$\stackrel{\rightarrow}{\leftarrow}$	HSO ₃ ⁻	+	HO_2^-
C.	SO ₃ ²⁻	+	H_2O_2	$\stackrel{>}{\leftarrow}$	HO_2^-	+	HSO ₃ ⁻
D.	SO ₃ ²⁻	+	H_2O_2	$\stackrel{\rightarrow}{\leftarrow}$	HSO ₃ ⁻	+	HO_2^-

15. Which of the following statements applies to $1.0 \text{ M } \text{NH}_{3(aq)}$ but not to $1.0 \text{ M } \text{NaOH}_{(aq)}$?

(11

- A. partially ionizes
- B. neutralizes an acid
- C. has a pH greater than 7
- D. turns bromcresol green from yellow to blue

16. In which of the following are reactants favoured?

- A. $HNO_2 + CN^- \rightleftharpoons NO_2^- + HCN$
- B. $H_2S + HCO_3^- \rightleftharpoons HS^- + H_2CO_3$
- C. $H_3PO_4 + NH_3 \rightleftharpoons H_2PO_4^- + NH_4^+$
- D. $CH_3COOH + PO_4^{3-} \rightleftharpoons CH_3COO^- + HPO_4^{2-}$
- 17. What is the pOH of a solution prepared by adding 0.50 mol of NaOH to prepare 0.50 L of solution?
 - A. 0.00
 - B. 0.30
 - C. 14.00
 - D. 13.70

18. What is the $[H_3O^+]$ in a solution with a pOH = 5.20?

A. 1.4×10^{-14} M C. 6.3×10^{-6} M B. 1.6×10^{-9} M D. 7.1×10^{-1} M 19. Which of the following solutions will have a pH = 1.00 ?

I.	0.10 M HCl	A. I only.
II.	0.10 M HNO ₂	B. III only.
III.	0.10 M NaOH	C. I and II only. D. I, II and III.

20. K_a for the acid H₂AsO₄⁻ is 5.6 × 10⁻⁸. What is the value of K_b for HAsO₄²⁻?

- A. 5.6×10^{-22}
- B. 3.2×10^{-14}
- C. 1.8×10^{-7}
- D. 2.4×10^{-4}
- 21. A hydronium ion has the formula
 - A. H_2^+
 - B. OH⁻
 - C. H_2O^+
 - D. H_3O^+
- 22. The conjugate acid of $C_6H_5NH_2$ is
 - A. $C_6H_5NH^-$
 - B. C₆H₅NH₃
 - C. $C_6H_5NH_2^+$
 - D. $C_6H_5NH_3^+$
- 23. Which of the following is a property of 1.0 M HCl but not a property of 1.0 M CH₃COOH ?
 - A. turns litmus red
 - B. ionizes completely
 - C. has a pH less than 7.0
 - D. produces H_3O^+ in solution
- 24. In a 1.0 M HF solution, the concentration of HF, F^- , and OH^- , from highest to lowest is
 - A. $[HF] > [F^{-}] > [OH^{-}]$ B. $[F^{-}] > [HF] > [OH^{-}]$
 - C. $\left[OH^{-} \right] > \left[HF \right] > \left[F^{-} \right]$
 - D. $\left[OH^{-}\right] > \left[F^{-}\right] > \left[HF\right]$

25. In which of the following reactions is water behaving as a Brønsted-Lowry acid?

A. $2H_2O \rightarrow 2H_2 + O_2$ B. $HCl + H_2O \rightarrow H_3O^+ + Cl^-$ C. $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ D. $NH_4^+ + H_2O \rightarrow H_3O^+ + NH_3$

26. What is the $[OH^{-}]$ of a solution with $[H_{3}O^{+}] = 9.3 \times 10^{-2} \text{ M}?$

- A. $9.3 \times 10^{-16} \,\mathrm{M}$
- B. $8.6 \times 10^{-13} \,\mathrm{M}$
- C. $1.1 \times 10^{-13} \,\mathrm{M}$
- D. 9.3×10^{-2} M

27. The pH of 0.10 M HNO_3 is

- A. 0.79
- B. 1.00
- C. 1.26
- D. 13.00

28. What is the pOH of a solution made by adding 50.0 mL of 0.50 M NaOH to 250.0 mL of water?

- A. 0.30
- B. 1.00
- C. 1.08
- D. 12.92
- 29. Which of the following 1.0 M solutions will have the lowest pH?
 - A. HCl
 - B. HCN
 - C. H₃PO₄
 - $D. \quad H_2C_2O_4$

30. The value of K_b for HTe⁻ is 4.8×10^{-7} . The value of K_a for H₂Te is

- A. 4.8×10^{-21}
- B. 2.3×10^{-13}
- C. 2.1×10^{-8}
- D. 4.8×10^{-7}

- 31. In an aqueous solution of NaCl, the pH is
 - A. less than 7 and the solution is acidic.
 - B. equal to 7 and the solution is neutral.
 - C. greater than 7 and the solution is basic.
 - D. greater than 7 and the solution is acidic.
- 32. Which of the following reactions is not a neutralization reaction?
 - A. KOH + HF \rightarrow KF + H₂O
 - B. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - C. $Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$
 - D. $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$

	Conjugate Acid	Conjugate Base
A.	PO ₄ ³⁻	$H_2PO_4^-$
B.	$H_2PO_4^-$	PO ₄ ³⁻
C.	$H_2PO_4^-$	H ₃ PO ₄
D.	H ₃ PO ₄	PO ₄ ³⁻

33. What is the conjugate acid and what is the conjugate base of HPO_4^{2-} ?

- 34. Which of the following would be the same when comparing equal volumes of 1.0 M HBr and 1.0 M CH₃COOH?
 - A. the pH
 - B. the electrical conductivity
 - C. the titration curve for reaction with a base
 - D. the moles of base required for neutralization
- 35. Which of the following represents the predominant reaction between NH_3 and H_2O ?

A. $NH_3 + H_2O \rightleftharpoons NH_3O + H_2$ B. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ C. $NH_3 + H_2O \rightleftharpoons NH_5^{2+} + O^{2-}$ D. $NH_3 + H_2O \rightleftharpoons H_3O^+ + NH_2^-$

$\text{HPO}_4^{2-} + \text{H}_2\text{SO}_3 \rightleftharpoons \text{H}_2\text{PO}_4^- + \text{HSO}_3^-$

What is the strongest acid and strongest base in the above system?

	Strongest acid	Strongest base
A.	$H_2PO_4^-$	HSO ₃ ⁻
B.	$H_2PO_4^-$	HPO_4^{2-}
C.	H_2SO_3	HSO ₃ ⁻
D.	H ₂ SO ₃	HPO_4^{2-}

37. When a solution has pOH = 5.30, the $[OH^{-}]$ is

- A. $5.0 \times 10^{-6} \text{ M}$
- B. 2.0×10^{-9} M
- C. 0.72 M
- D. 13.27 M

38. How many moles of HI are needed to prepare 3.0 L of an HI solution with a pH of 1.00?

- A. 0.030 mol
- B. 0.30 mol
- C. 3.0 mol
- D. 30 mol

39. Which of the following 1.0×10^{-3} M solutions has a pH of 3.0?

- A. HCl
- B. HCN
- C. NaOH
- D. K_2SO_4
- 40. Which of the following expressions shows the relationship between K_a and K_b for a conjugate pair?
 - A. $K_a \times K_b = 14$
 - B. $K_a + K_b = 14$
 - C. $K_a \times K_b = K_w$
 - D. $K_a \div K_b = K_w$

- 41. Which of the following will be the most basic?
 - A. 1.0 M NO_3^{-1}
 - B. 1.0 M SO_4^{2-}
 - C. 1.0 M CO_3^{2-}
 - D. 1.0 M PO_4^{3-}

42. Dissolving NaCH₃COO in water will produce a solution which is

- A. basic with pH > 7
- B. basic with pH < 7
- C. acidic with pH > 7
- D. acidic with pH < 7
- 43. Which of the following represents the complete neutralization of H_3PO_4 by NaOH?
 - A. $H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$
 - B. $H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$
 - C. $H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$
 - D. $H_3PO_4 + NaOH \rightarrow NaH + HPO_4 + H_2O$
- 44. The conjugate base of HBO_3^{2-} is
 - A. BO_3^{2-} C. HBO_3^{-}
 - B. BO_3^{3-} D. $H_2BO_3^{-}$
- 45. When comparing equal volumes of 0.10 M HNO_3 with 0.10 M HNO_2 , what would be observed?
 - A. The pH values would be the same.
 - B. The electrical conductivities would be different.
 - C. The effects on blue litmus paper would be different.
 - D. The volumes of 0.10 M NaOH needed for neutralization would be different.
- 46. Consider the equilibrium:

$$\mathrm{HF}_{(aq)} + \mathrm{HPO}_{4(aq)}^{2-} \rightleftharpoons \mathrm{F}_{(aq)}^{-} + \mathrm{H}_{2}\mathrm{PO}_{4(aq)}^{-}$$

For the above equilibrium, identify the weaker acid and determine whether reactants or products are favoured.

	Weaker Acid	Side Favoured
A.	HF	products
B.	HF	reactants
C.	$H_2PO_4^-$	products
D.	$H_2PO_4^{-}$	reactants

A.
$$2H_2O_{(\ell)} \rightarrow 2H_{2(g)} + O_{2(g)}$$

B. $H_2O_{(\ell)} \rightarrow 2H^+_{(aq)} + O^{2-}_{(aq)}$
C. $H_2O_{(\ell)} \rightarrow H_3O_{(aq)} + OH_{(aq)}$
D. $2H_2O_{(\ell)} \rightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$

48. Calculate the pOH of a 0.050 M HBr solution.

A.	0.30	C.	12.70
B.	1.30	D.	13.70

49. Calculate the value of K_b for HPO₄²⁻.

- A. 4.5×10^{-2}
- B. 1.6×10^{-7}
- C. 2.2×10^{-27}
- D. 6.2×10^{-22}
- 50. Which of the following is the net ionic equation describing the hydrolysis of $\text{KCN}_{(aa)}$?
 - A. $K^{+}_{(aq)} + H_2O_{(\ell)} \rightleftharpoons KOH_{(aq)} + H^{+}_{(aq)}$
 - B. $\operatorname{KCN}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{K}^+_{(aq)} + \operatorname{CN}^-_{(aq)}$
 - C. $\operatorname{CN}^{-}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{HCN}_{(aq)} + \operatorname{OH}^{-}_{(aq)}$
 - D. $\operatorname{CN}^{-}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(\ell)} \rightleftharpoons 2\operatorname{H}^{+}_{(aq)} + \operatorname{CNO}^{-}_{(aq)}$
- 51. Which of the following 1.0 M salt solutions will be acidic?
 - A. NaNO₃
 - B. NaHCO₃
 - C. NaHSO₄
 - D. NaHPO₄
- 52. The property common to both 0.10 M HCl and 0.10 M NaOH is that both solutions
 - A. taste bitter.
 - B. have a pH > 7.
 - C. conduct electricity.
 - D. react with magnesium to produce hydrogen gas.

53. Consider the following Brønsted-Lowry equilibrium:

$$C_6H_5NH_{2(aq)} + H_2O_{(\ell)} \rightleftharpoons C_6H_5NH_3^+_{(aq)} + OH^-_{(aq)}$$

The substances acting as acids and bases from left to right are

- A. acid, base, acid, base.
- B. acid, base, base, acid.
- C. base, acid, acid, base.
- D. base, acid, base, acid.
- 54. Consider the following equilibrium:

$$\mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4(aq)} + \mathrm{HPO}_{4(aq)}^{2-} \rightleftharpoons \mathrm{HC}_{2}\mathrm{O}_{4(aq)}^{-} + \mathrm{H}_{2}\mathrm{PO}_{4(aq)}^{-}$$

In the above equilibrium, a conjugate pair is

- A. HPO_4^{2-} and $HC_2O_4^{-}$
- B. HPO_4^{2-} and $H_2PO_4^{-}$
- C. $H_2C_2O_4$ and HPO_4^{2-}
- D. $H_2C_2O_4$ and $H_2PO_4^-$
- 55. The strength of the acids HCl, H_2SO_3 and H_3PO_4 from the weakest to strongest is
 - A. HCl, H₃PO₄, H₂SO₃
 B. HCl, H₂SO₃, H₃PO₄
 C. H₂SO₃, H₃PO₄, HCl
 - D. H_3PO_4 , H_2SO_3 , HCl
- 56. Consider the following equilibrium at 25° C :

$$2H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$

What happens to $[OH^-]$ and pH as 0.1 M HCl is added?

- A. $\left[OH^{-} \right]$ decreases and pH increases.
- B. $[OH^{-}]$ decreases and pH decreases.
- C. $[OH^{-}]$ increases and pH increases.
- D. $\left[OH^{-} \right]$ increases and pH decreases.

57. What is the value of the ionization constant for water at 25° C?

- A. 7.0
- B. 14.0
- C. 1.0×10^{-7}
- D. 1.0×10^{-14}

58. Which of the following equations represents the dissociation of $Sr(NO_3)_2$ in water?

- A. $Sr(NO_3)_{2(s)} \to Sr^{2+}_{(aq)} + 6NO^{-}_{(aq)}$
- B. $\operatorname{Sr}(\operatorname{NO}_3)_{2(s)} \to \operatorname{Sr}_{(aq)}^{2+} + 2\operatorname{NO}_3^{-}_{(aq)}$ C. $\operatorname{Sr}(\operatorname{NO}_3)_{2(s)} \to 2\operatorname{Sr}_{(aq)}^{2+} + \operatorname{NO}_3^{-}_{(aq)}$
- D. $\operatorname{Sr}(\operatorname{NO}_3)_{2(s)} \rightarrow \operatorname{Sr}_{(aq)}^{2+} + (\operatorname{NO}_3)_{2(aq)}^{2-}$
- 59. What is the equilibrium constant expression representing the predominant reaction for the hydrolysis of NaHCO_{3(aq)}?

A.
$$K_w = [H_3O^+][OH^-]$$

B. $K_{eq} = \frac{[Na^+][HCO_3^-]}{[NaHCO_3]}$
C. $K_a = \frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^-]}$
D. $K_b = \frac{[H_2CO_3][OH^-]}{[HCO_3^-]}$

60. Which of the following salt solutions will be neutral?

- A. 1.0 M NH₄Cl
- B. 1.0 M LiClO₄
- C. $1.0 \text{ M} \overline{\text{K}_2\text{C}_2\text{O}_4}$
- D. 1.0 M NaHCO₃

61. An Arrhenius base is defined as a substance that

A. releases $H^+_{(aq)}$

- B. releases $OH^{-}_{(aq)}$
- C. accepts a proton
- D. donates a proton

62. The conjugate acid of $HAsO_4^{2-}$ is

A.
$$AsO_4^{3-}$$
 C. $H_2AsO_4^{-}$
B. AsO_4^{2-} D. $H_2AsO_4^{2-}$

63. Which of the following will have the greatest electrical conductivity?

- A. 1.0 M HF
- B. 1.0 M HBr
- C. 1.0 M HCN
- D. 1.0 M H₂SO₃
- 64. Consider the equilibrium:

 $C_6H_5COOH + NO_2^- \rightleftharpoons HNO_2 + C_6H_5COO^-$

Identify the stronger acid and predict whether reactants or products are favoured.

	Stronger Acid	Side Favoured
A.	HNO ₂	reactants
B.	HNO ₂	products
C.	C ₆ H ₅ COOH	reactants
D.	-C ₆ H ₅ COOH-	products

65. Which of the following represents the equilibrium expression for the ionization of water?

A. $K_w = [H_3O^+][OH^-]$ B. $K_w = \frac{1}{[H_3O^+][OH^-]}$ C. $K_w = [H_3O^+] + [OH^-]$ D. $K_w = \frac{[H_3O^+][OH^-]}{[H_2O]}$

- 66. Determine the pH of 3.0 M KOH .
 - A. 0.48
 - B. 11.00 _____
 - C. 13.52
 - D. 14.48
- 67. Four acids are analyzed and their K_a values are determined. Which of the following values represents the strongest acid?
 - A. $K_a = 2.2 \times 10^{-13}$
 - B. $K_a = 6.2 \times 10^{-8}$
 - C. $K_a = 1.7 \times 10^{-5}$
 - D. $K_a = 1.2 \times 10^{-2}$

A.
$$\operatorname{NH}_{4}\operatorname{NO}_{3(s)} \to \operatorname{NH}_{4}^{+}_{(aq)} + \operatorname{NO}_{3}^{-}_{(aq)}$$

B. $\operatorname{NH}_{4}^{+}_{(aq)} + \operatorname{NO}_{3}^{-}_{(aq)} \to \operatorname{NH}_{4}\operatorname{NO}_{3(s)}$
C. $\operatorname{NH}_{4}^{+}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \to \operatorname{H}_{3}\operatorname{O}_{(aq)}^{+} + \operatorname{NH}_{3(aq)}$
D. $\operatorname{NO}_{3}^{-}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \to \operatorname{HNO}_{3(aq)} + \operatorname{OH}_{(aq)}^{-}_{(aq)}$

69. A solution of $Al(NO_3)_3$ will be

- A. basic.
- B. acidic.
- C. neutral.
- D. amphiprotic.

70. A Brønsted-Lowry acid is defined as a substance that

- A. releases $H^+_{(aq)}$
- B. releases $OH^{-}_{(aq)}$
- C. accepts a proton
- D. donates a proton

71. Which of the following represents the reaction of $H_2PO_4^-$ acting as an acid?

- A. $H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^-$
- B. $H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + H_3PO_4$
- C. $H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$
- D. $H_2PO_4^- + 2H_2O \rightleftharpoons H_4PO_4^+ + 2OH^-$
- 72. Consider the following equilibrium:

$$HS^- + H_3BO_3 \rightleftharpoons H_2BO_3^- + H_2S$$

The two species acting as Brønsted-Lowry bases in the above equilibrium are

A. HS^- and H_2S C. HS^- and $H_2BO_3^-$ B. H_3BO_3 and H_2S D. H_3BO_3 and $H_2BO_3^-$

73. List the bases $C_2 O_4^{2-}$, NH_3 , and PO_4^{3-} in order from strongest to weakest.

A. $PO_4^{3-} > NH_3 > C_2O_4^{2-}$ B. $C_2O_4^{2-} > NH_3 > PO_4^{3-}$ 74. A basic solution can be defined as one in which

A.
$$[H_3O^+]$$
 is not present
B. $[H_3O^+]$ is equal to $[OH^-]$
C. $[H_3O^+]$ is less than $[OH^-]$
D. $[H_3O^+]$ is greater than $[OH^-]$

75. What is the $[H_3O^+]$ in 0.025 M HNO₃?

- A. $4.0 \times 10^{-13} \text{ M}$
- B. 0.025 M
- C. 1.60 M
- D. 12.40 M
- 76. Write the base ionization constant expression for

$$\begin{split} \mathrm{NH}_{3(aq)} + \mathrm{H}_{2}\mathrm{O}_{(\ell)} & \overrightarrow{\leftarrow} & \mathrm{NH}_{4}^{+}_{(aq)} + \mathrm{OH}_{(aq)}^{-} \\ \mathrm{A.} \quad \mathrm{K}_{b} = \frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]} & \mathrm{C.} \quad \mathrm{K}_{b} = \frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2}\mathrm{O}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]} \\ \mathrm{B.} \quad \mathrm{K}_{b} = \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} & \mathrm{D.} \quad \mathrm{K}_{b} = \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2}\mathrm{O}\right]} \end{split}$$

The equation for the predominant hydrolysis of NH₄NO₃ can be represented by

77.

A.
$$\operatorname{NH}_{4}\operatorname{NO}_{3(s)} \rightleftharpoons \operatorname{NH}_{4}^{+}_{(aq)} + \operatorname{NO}_{3}^{-}_{(aq)}$$

B. $\operatorname{NH}_{4}^{+}_{(\overline{aq})} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{H}_{3}\operatorname{O}_{(aq)}^{+} + \operatorname{NH}_{3(aq)}$
C. $\operatorname{NO}_{3}^{-}_{(\overline{aq})} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{HNO}_{3(aq)} + \operatorname{OH}_{(aq)}^{-}$
D. $\operatorname{NH}_{4}\operatorname{NO}_{3(aq)} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{H}_{3}\operatorname{O}_{(aq)}^{+} + \operatorname{NH}_{3}\operatorname{NO}_{3}^{-}_{(aq)}$

78. A solution made from baking soda $(NaHCO_3)$ has an amphiprotic anion which is

- A. basic since $K_a < K_b$
- B. basic since $K_a > K_b$
- C. acidic since $K_a < K_b$
- D. acidic since $K_a > K_b$

79. Which of the following represents the neutralization reaction between $Ca(OH)_{2(s)}$ and $HCl_{(aq)}$?

A.
$$H_2O_{(\ell)} \rightarrow H^+_{(aq)} + OH^-_{(aq)}$$

B.
$$\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{Cl}_{(aq)}^{-} \to \operatorname{CaCl}_{2(s)}$$

- C. $\operatorname{Ca(OH)}_{2(s)} + 2\operatorname{HCl}_{(aq)} \rightarrow \operatorname{CaCl}_{2(aq)} + 2\operatorname{H}_2\operatorname{O}_{(\ell)}$
- D. $\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{OH}_{(aq)}^{-} + 2\operatorname{H}_{(aq)}^{+} + 2\operatorname{Cl}_{(aq)}^{-} \rightarrow \operatorname{Ca}\operatorname{Cl}_{2(s)} + 2\operatorname{H}_{2}\operatorname{O}_{(\ell)}$
- 80. Which of the following solutions will have the lowest electrical conductivity?
 - A. 1.0 M HI
 - 1.0 M H₂S Β.
 - C. 1.0 M NaOH
 - D. 1.0 M NaNO₃
- 81. Consider the following equilibrium:

$$\text{HCO}_3^- + \text{H}_3\text{O}^+ \rightleftharpoons \text{H}_2\text{CO}_3 + \text{H}_2\text{O}$$

Which of the following statements is true?

- A. Products are favoured because H_2O is a stronger acid than H_2CO_3
- Products are favoured because H_3O^+ is a stronger acid than H_2CO_3 Β.
- C. Reactants are favoured because HCO_3^- is a stronger base than H_2O
- D. Reactants are favoured because H_3O^+ is a stronger acid than H_2CO_3
- 82. Which of the following factors of an acidic solution would affect its pH?

I.	the strength of the acid	
II.	the concentration of the acid	
III.	the temperature	

- A. I and II only.
- B. II and III only.C. I and III only.D. I, II and III.

83. Consider the following equilibrium:

$$2H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$

What changes occur to $[H_3O^+]$ and pH when NaOH is added?

A. $[H_3O^+]$ increases and pH increases.C. $[H_3O^+]$ decreases and pH increases.B. $[H_3O^+]$ increases and pH decreases.D. $[H_3O^+]$ decreases and pH decreases.

- The ionization of water is endothermic. How is K_w related to the 84. temperature of water?
 - A. K_w increases as temperature increases.
 - B. K_w decreases as temperature increases.
 - C. K_w increases as temperature decreases.
 - D. K_w remains constant as temperature decreases.
- 85. Which of the following represents the dissociation equation of a salt in water?
 - A. $\operatorname{KCl}_{(s)} \to \operatorname{K}^+_{(aq)} + \operatorname{Cl}^-_{(aq)}$
 - B. $\operatorname{Ca}_{(aq)}^{2+} + \operatorname{SO}_{4(aq)}^{2-} \to \operatorname{CaSO}_{4(s)}$ C. $\operatorname{HCl}_{(aq)} + \operatorname{KOH}_{(aq)} \to \operatorname{KCl}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(\overline{\iota})}$
 - D. $2Na_{(s)} + 2H_2O_{(\ell)} \rightarrow 2NaOH_{(aa)} + H_{2(g)}$

Which of the following represents the equilibrium constant expression 86. for the hydrolysis reaction that occurs in $NaF_{(aa)}$?

A.
$$K_b = \frac{\left[\overline{HF}\right]\left[\overline{OH}^{-}\right]}{\left[F^{-}\right]}$$

B. $K_a = \frac{\left[F^{-}\right]\left[\overline{H_3O^{+}}\right]}{\underline{[HF]}}$
C. $K_{eq} = \frac{\left[Na^{+}\right]\left[F^{-}\right]}{\left[NaF\right]}$
D. $K_w = \left[H_3O^{+}\right]\left[OH^{-}\right]$

87. Which of the following salt solutions will be acidic?

- A. $KClO_4$
- B. $NH_4B\overline{r}$
- C. NaHCO₃
- D. $Na_2C_2O_4$

In which of the following is HSO₃⁻ acting as a Brønsted-Lowry acid? 88.

A. $HSO_3^- + H_2O \rightarrow H_2SO_3 + OH^-$

- B. $NH_3 + HSO_3^- \rightarrow NH_4^+ + SO_3^{2-}$
- C. $HSO_3^- + HPO_4^{2-} \rightarrow H_2SO_3 + PO_4^{3-}$
- D. $H_2C_2O_4 + HSO_3^- \rightarrow HC_2O_4^- + H_2SO_3$

What is the conjugate base of $H_2PO_4^-$? 89.

> A. OH^- C. HPO_4^{2-} B. PO_4^{3-} D. H_3PO_4

90. Which of the following is correct if the four solutions listed are compared to one another?

		Concentration	Relative Conductivity	Ionization
A.	strong acid	0.50 M	highest	complete
B.	weak acid	0.50 M	lowest	complete
C.	strong base	1.0 M	highest	complete
D.	weak base	1.0 M	lowest	complete

- 91. Which of the following is the strongest acid that can exist in an aqueous solution?
 - A. O²⁻
 - B. NH_2^-
 - C. H₃O⁺
 - D. HClO₄

92. Which of the following household products could have a pH = 12.0?

- A. soda pop
- B. tap water
- C. lemon juice
- D. oven cleaner
- 93. What is the pH of a 0.050 M KOH solution?
 - A. 0.30
 - B. 1.30
 - C. 12.70
 - D. 13.70
- 94. What is the value of K_b for $H_2PO_4^-$?
 - A. 1.3×10^{-12}
 - B. 6.2×10^{-8}
 - C. 1.6×10^{-7}
 - D. 7.5×10^{-3}