1. Which of the following are general properties of bases in aqueous solution?
A. feel slippery and increase $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
B. turn litmus red and accept a proton
C. conduct electricity and turn litmus blue
D. feel slippery and react with Au to produce $\mathrm{H}_{2(g)}$
2. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
A. PO_{4}^{3-}
B. HPO_{4}^{-}
C. $\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
3. The electrical conductivities of 0.10 M solutions of $\mathrm{NaCl}, \mathrm{HCN}$ and HNO_{2} are measured. The order by conductivity from highest to lowest is
(2 ma
A. $\mathrm{NaCl}>\mathrm{HNO}_{2}>\mathrm{HCN}$
B. $\mathrm{HCN}>\mathrm{HNO}_{2}>\mathrm{NaCl}$
C. $\mathrm{NaCl}>\mathrm{HCN}>\mathrm{HNO}_{2}$
D. $\mathrm{HNO}_{2}>\mathrm{HCN}>\mathrm{NaCl}$
4. Which of the following acids has the weakest conjugate base?
A. HIO_{3}
B. HNO_{2}
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$
5. When 10.0 mL of 0.10 M HCl is added to 10.0 mL of water, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in the final solution is
A. $\quad 0.010 \mathrm{M}$
B. 0.050 M
C. 0.10 M
D. 0.20 M
6. Which of the following chemical species are amphiprotic in aqueous solution?

I.	F $^{-}$
II.	$\mathrm{NH}_{4}{ }^{+}$
III.	$\mathrm{HPO}_{4}{ }^{2-}$

A. I only.
B. II only.
C. III only.
D. II and III only.
7. A solution is prepared by mixing $1.50 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$ with $3.00 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}$. Calculate the moles of OH^{-}present after mixing.
A. 0 mol
B. $\quad 1.50 \times 10^{-3} \mathrm{~mol}$
C. $\quad 3.00 \times 10^{-3} \mathrm{~mol}$
D. $4.50 \times 10^{-3} \mathrm{~mol}$
8. Calculate the pH in a 0.020 M solution of $\mathrm{Sr}(\mathrm{OH})_{2}$.
A. 1.40
B. 1.70
C. 12.30
D. 12.60
9. The K_{b} value for $\mathrm{HPO}_{4}{ }^{2-}$ is
A. 2.2×10^{-13}
B. 6.2×10^{-8}
C. 1.6×10^{-7}
D. 7.5×10^{-3}
10. Which of the following 1.0 M salt solutions is acidic?
A. BaS
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{NaCH}_{3} \mathrm{COO}$
11. Which of the following represents the hydrolysis reaction that occurs in a solution of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$?
A. $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftarrows 2 \mathrm{~K}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
B. $\mathrm{K}^{+}+2 \mathrm{H}_{2} \mathrm{O} \underset{\mathrm{KOH}+\mathrm{H}_{3} \mathrm{O}^{+} \text {}}{ }$
C. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-}$
D. $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2}$
12. Which of the following tests could be used to distinguish between 1.0 M HCl and 1.0 M NaOH ?

I.	electrical conductivity
II.	reaction with zinc to produce hydrogen gas
III.	colour of the indicator phenolphthalein

A. III only
B. I and II only
C. II and III only
D. I, II and III
13. An Arrhenius base is defined as a compound that
A. accepts OH^{-}in solution.
B. releases OH^{-}in solution.
C. accepts protons in solution.
D. donates protons in solution.
14. In which one of the following equations are the Brønsted-Lowry acids and bases all correctly identified?

	Acid		+	Base	\rightleftarrows	Base
	+	Acid				
A.	$\mathrm{H}_{2} \mathrm{O}_{2}+$	$\mathrm{SO}_{3}{ }^{2-}$	\rightleftarrows	$\mathrm{HO}_{2}{ }^{-}$	+	$\mathrm{HSO}_{3}{ }^{-}$
B.	$\mathrm{H}_{2} \mathrm{O}_{2}+$	$\mathrm{SO}_{3}{ }^{2-}$	\rightleftarrows	$\mathrm{HSO}_{3}{ }^{-}$	+	$\mathrm{HO}_{2}{ }^{-}$
C.	$\mathrm{SO}_{3}{ }^{2-}+$	$\mathrm{H}_{2} \mathrm{O}_{2}$	\rightleftarrows	$\mathrm{HO}_{2}{ }^{-}$	+	$\mathrm{HSO}_{3}{ }^{-}$
D.	$\mathrm{SO}_{3}{ }^{2-}+$	$\mathrm{H}_{2} \mathrm{O}_{2}$	\rightleftarrows	$\mathrm{HSO}_{3}{ }^{-}+$	$+\mathrm{HO}_{2}^{-}$	

15. Which of the following statements applies to $1.0 \mathrm{M} \mathrm{NH}_{3(a q)}$ but not to $1.0 \mathrm{M} \mathrm{NaOH}_{(a q)}$?
A. partially ionizes
B. neutralizes an acid
C. has a pH greater than 7
D. turns bromcresol green from yellow to blue
16. In which of the following are reactants favoured?
A. $\mathrm{HNO}_{2}+\mathrm{CN}^{-} \rightleftarrows \mathrm{NO}_{2}^{-}+\mathrm{HCN}$
B. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HCO}_{3}{ }^{-} \rightleftarrows \mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NH}_{3} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{NH}_{4}^{+}$
D. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PO}_{4}{ }^{3-} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HPO}_{4}{ }^{2-}$
17. What is the pOH of a solution prepared by adding 0.50 mol of NaOH to prepare 0.50 L of solution?
A. 0.00
B. 0.30
C. 14.00
D. 13.70
18. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with a $\mathrm{pOH}=5.20$?
A. $\quad 1.4 \times 10^{-14} \mathrm{M}$
B. $1.6 \times 10^{-9} \mathrm{M}$
C. $\quad 6.3 \times 10^{-6} \mathrm{M}$
D. $7.1 \times 10^{-1} \mathrm{M}$
19. Which of the following solutions will have a $\mathrm{pH}=1.00$?

I.	0.10 M HCl
II.	$0.10 \mathrm{M} \mathrm{HNO}_{2}$
III.	0.10 M NaOH

A. I only.
B. III only.
C. I and II only.
D. I, II and III.
20. $\quad \mathrm{K}_{a}$ for the acid $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$is 5.6×10^{-8}. What is the value of K_{b} for $\mathrm{HAsO}_{4}{ }^{2-}$?
A. 5.6×10^{-22}
B. 3.2×10^{-14}
C. 1.8×10^{-7}
D. 2.4×10^{-4}
21. A hydronium ion has the formula
A. $\mathrm{H}_{2}{ }^{+}$
B. OH^{-}
C. $\mathrm{H}_{2} \mathrm{O}^{+}$
D. $\mathrm{H}_{3} \mathrm{O}^{+}$
22. The conjugate acid of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{-}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}{ }^{+}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$
23. Which of the following is a property of 1.0 M HCl but not a property of $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
A. turns litmus red
B. ionizes completely
C. has a pH less than 7.0
D. produces $\mathrm{H}_{3} \mathrm{O}^{+}$in solution
24. In a 1.0 M HF solution, the concentration of $\mathrm{HF}, \mathrm{F}^{-}$, and OH^{-}, from highest to lowest is
A. $[\mathrm{HF}]>\left[\mathrm{F}^{-}\right]>\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{F}^{-}\right]>[\mathrm{HF}]>\left[\mathrm{OH}^{-}\right]$
C. $\left[\mathrm{OH}^{-}\right]>[\mathrm{HF}]>\left[\mathrm{F}^{-}\right]$
D. $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{F}^{-}\right]>[\mathrm{HF}]$
25. In which of the following reactions is water behaving as a Brønsted-Lowry acid?
A. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
B. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
C. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
D. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$
26. What is the $\left[\mathrm{OH}^{-}\right]$of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.3 \times 10^{-2} \mathrm{M}$?
A. $\quad 9.3 \times 10^{-16} \mathrm{M}$
B. $8.6 \times 10^{-13} \mathrm{M}$
C. $1.1 \times 10^{-13} \mathrm{M}$
D. $9.3 \times 10^{-2} \mathrm{M}$
27. The pH of $0.10 \mathrm{M}_{\mathrm{HNO}}^{3}$ is
A. 0.79
B. $\quad 1.00$
C. 1.26
D. 13.00
28. What is the pOH of a solution made by adding 50.0 mL of 0.50 M NaOH to 250.0 mL of water?
A. 0.30
B. 1.00
C. 1.08
D. 12.92
29. Which of the following 1.0 M solutions will have the lowest pH ?
A. HCl
B. HCN
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
30. The value of K_{b} for HTe^{-}is 4.8×10^{-7}. The value of K_{a} for $\mathrm{H}_{2} \mathrm{Te}$ is
A. 4.8×10^{-21}
B. 2.3×10^{-13}
C. 2.1×10^{-8}
D. 4.8×10^{-7}
31. In an aqueous solution of NaCl , the pH is
A. less than 7 and the solution is acidic.
B. equal to 7 and the solution is neutral.
C. greater than 7 and the solution is basic.
D. greater than 7 and the solution is acidic.
32. Which of the following reactions is not a neutralization reaction?
A. $\mathrm{KOH}+\mathrm{HF} \rightarrow \mathrm{KF}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
33. What is the conjugate acid and what is the conjugate base of $\mathrm{HPO}_{4}{ }^{2-}$?

	Conjugate Acid	Conjugate Base
A.	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
B.	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{PO}_{4}{ }^{3-}$
C.	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$
D.	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{PO}_{4}{ }^{3-}$

34. Which of the following would be the same when comparing equal volumes of 1.0 M HBr and $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
A. the pH
B. the electrical conductivity
C. the titration curve for reaction with a base
D. the moles of base required for neutralization
35. Which of the following represents the predominant reaction between NH_{3} and $\mathrm{H}_{2} \mathrm{O}$?
A. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \underset{ }{\rightleftarrows} \mathrm{NH}_{3} \mathrm{O}+\mathrm{H}_{2}$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}}{\rightleftarrows}$
C. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{5}{ }^{2+}+\mathrm{O}^{2-}$
D. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{2}^{-}$
36. Consider the following reaction:

$$
\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HSO}_{3}^{-}
$$

What is the strongest acid and strongest base in the above system?
A.

Strongest acid	Strongest base
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{HSO}_{3}{ }^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$
$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HPO}_{4}{ }^{2-}$

37. When a solution has $\mathrm{pOH}=5.30$, the $\left[\mathrm{OH}^{-}\right]$is
A. $\quad 5.0 \times 10^{-6} \mathrm{M}$
B. $2.0 \times 10^{-9} \mathrm{M}$
C. $\quad 0.72 \mathrm{M}$
D. 13.27 M
38. How many moles of HI are needed to prepare 3.0 L of an HI solution with a pH of 1.00 ?
A. $\quad 0.030 \mathrm{~mol}$
B. $\quad 0.30 \mathrm{~mol}$
C. 3.0 mol
D. 30 mol
39. Which of the following $1.0 \times 10^{-3} \mathrm{M}$ solutions has a pH of 3.0 ?
A. HCl
B. HCN
C. NaOH
D. $\mathrm{K}_{2} \mathrm{SO}_{4}$
40. Which of the following expressions shows the relationship between K_{a} and K_{b} for a conjugate pair?
A. $\mathrm{K}_{a} \times \mathrm{K}_{b}=14$
B. $\mathrm{K}_{a}+\mathrm{K}_{b}=14$
C. $\mathrm{K}_{a} \times \mathrm{K}_{b}=\mathrm{K}_{w}$
D. $\mathrm{K}_{a} \div \mathrm{K}_{b}=\mathrm{K}_{w}$
41. Which of the following will be the most basic?
A. $\quad 1.0 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$
B. $\quad 1.0 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}$
C. $1.0 \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$
D. $\quad 1.0 \mathrm{M} \mathrm{PO}_{4}^{3-}$
42. Dissolving $\mathrm{NaCH}_{3} \mathrm{COO}$ in water will produce a solution which is
A. basic with $\mathrm{pH}>7$
B. basic with $\mathrm{pH}<7$
C. acidic with $\mathrm{pH}>7$
D. acidic with $\mathrm{pH}<7$
43. Which of the following represents the complete neutralization of $\mathrm{H}_{3} \mathrm{PO}_{4}$ by NaOH ?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NaH}+\mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}$
44. The conjugate base of $\mathrm{HBO}_{3}{ }^{2-}$ is
A. $\quad \mathrm{BO}_{3}{ }^{2-}$
B. $\mathrm{BO}_{3}{ }^{3-}$
C. $\mathrm{HBO}_{3}{ }^{-}$
D. $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
45. When comparing equal volumes of $0.10 \mathrm{M} \mathrm{HNO}_{3}$ with $0.10 \mathrm{M} \mathrm{HNO}_{2}$, what would be observed?
A. The pH values would be the same.
B. The electrical conductivities would be different.
C. The effects on blue litmus paper would be different.
D. The volumes of 0.10 M NaOH needed for neutralization would be different.
46. Consider the equilibrium:

$$
\mathrm{HF}_{(a q)}+\mathrm{HPO}_{4(a q)}^{2-} \underset{(a q)}{\rightleftarrows}+\mathrm{H}_{2} \mathrm{PO}_{4(a q)}^{-}
$$

For the above equilibrium, identify the weaker acid and determine whether reactants or products are favoured.
A.
B.
C.

Weaker Acid	Side Favoured
HF	products
HF	reactants
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	products
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	reactants

47. The ionization of water can be represented by
A. $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}$
B. $\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 2 \mathrm{H}_{(a q)}^{+}+\mathrm{O}_{(a q)}^{2-}$
C. $\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}+\mathrm{OH}_{(a q)}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
48. Calculate the pOH of a 0.050 M HBr solution.
A. $\quad 0.30$
B. 1.30
C. $\quad 12.70$
D. 13.70
49. Calculate the value of K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$.
A. 4.5×10^{-2}
B. 1.6×10^{-7}
C. 2.2×10^{-27}
D. 6.2×10^{-22}
50. Which of the following is the net ionic equation describing the hydrolysis of $\mathrm{KCN}_{(a q)}$?
A. $\mathrm{K}_{(a q)}^{+}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{KOH}_{(a q)}+\mathrm{H}_{(a q)}^{+}$
B. $\mathrm{KCN}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{K}_{(a q)}^{+}+\mathrm{CN}^{-}(a q)$
C. $\mathrm{CN}^{-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{HCN}_{(a q)}+\mathrm{OH}^{-}(a q)$
D. $\mathrm{CN}^{-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows 2 \mathrm{H}^{+}{ }_{(a q)}+\mathrm{CNO}_{(a q)}^{-}$
51. Which of the following 1.0 M salt solutions will be acidic?
A. NaNO_{3}
B. NaHCO_{3}
C. NaHSO_{4}
D. NaHPO_{4}
52. The property common to both 0.10 M HCl and 0.10 M NaOH is that both solutions
A. taste bitter.
B. have a $\mathrm{pH}>7$.
C. conduct electricity.
D. react with magnesium to produce hydrogen gas.
53. Consider the following Brønsted-Lowry equilibrium:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }_{(a q)}+\mathrm{OH}_{(a q)}^{-}
$$

The substances acting as acids and bases from left to right are
A. acid, base, acid, base.
B. acid, base, base, acid.
C. base, acid, acid, base.
D. base, acid, base, acid.
54. Consider the following equilibrium:

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(a q)}+\mathrm{HPO}_{4(a q)}^{2-} \rightleftarrows \mathrm{HC}_{2} \mathrm{O}_{4(a q)}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4(a q)}^{-}
$$

In the above equilibrium, a conjugate pair is
A. $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
B. $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
55. The strength of the acids $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ from the weakest to strongest is
A. $\mathrm{HCl}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$
B. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HCl}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HCl}$
56. Consider the following equilibrium at $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

What happens to $\left[\mathrm{OH}^{-}\right]$and pH as 0.1 M HCl is added?
A. $\left[\mathrm{OH}^{-}\right]$decreases and pH increases.
B. $\left[\mathrm{OH}^{-}\right]$decreases and pH decreases.
C. $\left[\mathrm{OH}^{-}\right]$increases and pH increases.
D. $\left[\mathrm{OH}^{-}\right]$increases and pH decreases.
57.

What is the value of the ionization constant for water at $25^{\circ} \mathrm{C}$?
A. 7.0
B. 14.0
C. 1.0×10^{-7}
D. 1.0×10^{-14}
58. Which of the following equations represents the dissociation of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ in water?
A. $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow \mathrm{Sr}_{(a q)}^{2+}+6 \mathrm{NO}^{-}(a q)$
B. $\quad \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow \mathrm{Sr}_{(a q)}^{2+}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}$
C. $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow 2 \mathrm{Sr}_{(a q)}^{2+}+\mathrm{NO}_{3}^{-}{ }_{(a q)}$
D. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow \mathrm{Sr}_{(a q)}^{2+}+\left(\mathrm{NO}_{3}\right)_{2}{ }_{(a q)}^{2-}$
59. What is the equilibrium constant expression representing the predominant reaction for the hydrolysis of $\mathrm{NaHCO}_{3(a q)}$?
A. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Na}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{NaHCO}_{3}\right]}$
C. $\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$
D. $\mathrm{K}_{b}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$
60. Which of the following salt solutions will be neutral?
A. $\quad 1.0 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
B. $1.0 \mathrm{M} \mathrm{LiClO}_{4}$
C. $1.0 \mathrm{M} \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. $1.0 \mathrm{M} \mathrm{NaHCO}_{3}$
61. An Arrhenius base is defined as a substance that
A. releases $\mathrm{H}^{+}(a q)$
B. releases $\mathrm{OH}^{-}(a q)$
C. accepts a proton
D. donates a proton
62. The conjugate acid of $\mathrm{HAsO}_{4}{ }^{2-}$ is
A. AsO_{4}^{3-}
B. $\mathrm{AsO}_{4}{ }^{2-}$
C. $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{2-}$
63. Which of the following will have the greatest electrical conductivity?
A. 1.0 M HF
B. 1.0 M HBr
C. 1.0 M HCN
D. $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$
64. Consider the equilibrium:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NO}_{2}^{-} \rightleftarrows \mathrm{HNO}_{2}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}
$$

Identify the stronger acid and predict whether reactants or products are favoured.
A.

Stronger Acid	Side Favoured
HNO_{2}	reactants
HNO_{2}	products
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	reactants
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	products

65. Which of the following represents the equilibrium expression for the ionization of water?
A. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
B. $\mathrm{K}_{w}=\frac{1}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}$
C. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
D. $\mathrm{K}_{w}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
66. Determine the pH of 3.0 M KOH .
A. 0.48
B. 11.00
C. 13.52
D. 14.48
67. Four acids are analyzed and their K_{a} values are determined. Which of the following values represents the strongest acid?
A. $\mathrm{K}_{a}=2.2 \times 10^{-13}$
B. $\mathrm{K}_{a}=6.2 \times 10^{-8}$
C. $\mathrm{K}_{a}=1.7 \times 10^{-5}$
D. $\mathrm{K}_{a}=1.2 \times 10^{-2}$
68. The dissociation of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is represented by
A. $\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \rightarrow \mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{NO}_{3}^{-}{ }_{(a q)}$
B. $\mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{NO}_{3}^{-}{ }_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(s)}$
C. $\mathrm{NH}_{4}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{NH}_{3(a q)}$
D. $\mathrm{NO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{HNO}_{3(a q)}+\mathrm{OH}_{(a q)}^{-}$
69. A solution of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ will be
A. basic.
B. acidic.
C. neutral.
D. amphiprotic.
70. A Brønsted-Lowry acid is defined as a substance that
A. releases $\mathrm{H}^{+}{ }_{(a q)}$
B. releases $\mathrm{OH}^{-}(a q)$
C. accepts a proton
D. donates a proton
71. Which of the following represents the reaction of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$acting as an acid?
A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}}{\rightleftarrows}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{4} \mathrm{PO}_{4}^{+}+2 \mathrm{OH}^{-}$
72. Consider the following equilibrium:

$$
\mathrm{HS}^{-}+\mathrm{H}_{3} \mathrm{BO}_{3} \rightleftarrows \mathrm{H}_{2} \mathrm{BO}_{3}^{-}+\mathrm{H}_{2} \mathrm{~S}
$$

The two species acting as Brønsted-Lowry bases in the above equilibrium are
A. HS^{-}and $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$
C. HS^{-}and $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
D. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
73. List the bases $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{NH}_{3}$, and $\mathrm{PO}_{4}{ }^{3-}$ in order from strongest to weakest.
A. $\mathrm{PO}_{4}{ }^{3-}>\mathrm{NH}_{3}>\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
B. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}>\mathrm{NH}_{3}>\mathrm{PO}_{4}{ }^{3-}$
74. A basic solution can be defined as one in which
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is not present
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equal to $\left[\mathrm{OH}^{-}\right]$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $\left[\mathrm{OH}^{-}\right]$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $\left[\mathrm{OH}^{-}\right]$
75. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $0.025 \mathrm{M} \mathrm{HNO}_{3}$?
A. $4.0 \times 10^{-13} \mathrm{M}$
B. 0.025 M
C. $\quad 1.60 \mathrm{M}$
D. 12.40 M
76. Write the base ionization constant expression for

$$
\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{NH}_{4(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

A. $\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}$
B. $\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
C. $\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}$
D. $\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
77. The equation for the predominant hydrolysis of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ can be represented by
A. $\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \rightleftarrows \mathrm{NH}_{4}{ }_{(a q)}+\mathrm{NO}_{3}{ }_{(a q)}$
B. $\quad \mathrm{NH}_{4}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{NH}_{3(a q)}$
C. $\mathrm{NO}_{3_{(a q)}^{-}}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{HNO}_{3(a q)}+\mathrm{OH}_{(a q)}^{-}$
D. $\mathrm{NH}_{4} \mathrm{NO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{NH}_{3} \mathrm{NO}_{3}{ }_{(a q)}$
78. A solution made from baking soda $\left(\mathrm{NaHCO}_{3}\right)$ has an amphiprotic anion which is
A. basic since $\mathrm{K}_{a}<\mathrm{K}_{b}$
B. basic since $\mathrm{K}_{a}>\mathrm{K}_{b}$
C. acidic since $\mathrm{K}_{a}<\mathrm{K}_{b}$
D. acidic since $K_{a}>K_{b}$
79. Which of the following represents the neutralization reaction between $\mathrm{Ca}(\mathrm{OH})_{2(s)}$ and $\mathrm{HCl}_{(a q)}$?
A. $\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
B. $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{Cl}^{-}(a q) \rightarrow \mathrm{CaCl}_{2(s)}$
C. $\mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
D. $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-}+2 \mathrm{H}_{(a q)}^{+}+2 \mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{CaCl}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
80. Which of the following solutions will have the lowest electrical conductivity?
A. $\quad 1.0 \mathrm{M} \mathrm{HI}$
B. $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$
C. 1.0 M NaOH
D. $\quad 1.0 \mathrm{M} \mathrm{NaNO}_{3}$
81. Consider the following equilibrium:

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Which of the following statements is true?
A. Products are favoured because $\mathrm{H}_{2} \mathrm{O}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. Products are favoured because $\mathrm{H}_{3} \mathrm{O}^{+}$is a stronger acid than $\mathrm{H}_{2} \mathrm{CO}_{3}$
C. Reactants are favoured because $\mathrm{HCO}_{3}{ }^{-}$is a stronger base than $\mathrm{H}_{2} \mathrm{O}$
D. Reactants are favoured because $\mathrm{H}_{3} \mathrm{O}^{+}$is a stronger acid than $\mathrm{H}_{2} \mathrm{CO}_{3}$
82. Which of the following factors of an acidic solution would affect its pH ?

I.	the strength of the acid
II.	the concentration of the acid
III.	the temperature

A. I and II only.
B. II and III only.
C. I and III only.
D. I, II and III.
83. Consider the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

What changes occur to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH when NaOH is added?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases and pH increases.
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases and pH decreases.
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases and pH increases.
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases and pH decreases.
84. The ionization of water is endothermic. How is K_{w} related to the temperature of water?
A. K_{w} increases as temperature increases.
B. K_{w} decreases as temperature increases.
C. K_{w} increases as temperature decreases.
D. K_{w} remains constant as temperature decreases.
85. Which of the following represents the dissociation equation of a salt in water?
A. $\quad \mathrm{KCl}_{(s)} \rightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$
B. $\mathrm{Ca}_{(a q)}^{2+}+\mathrm{SO}_{4}{ }_{(a q)}^{2-} \rightarrow \mathrm{CaSO}_{4(s)}$
C. $\mathrm{HCl}_{(a q)}+\mathrm{KOH}_{(a q)} \rightarrow \mathrm{KCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
D. $2 \mathrm{Na}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 2 \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2(\mathrm{~g})}$
86. Which of the following represents the equilibrium constant expression for the hydrolysis reaction that occurs in $\mathrm{NaF}_{(a q)}$?
A. $\mathrm{K}_{b}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}$
B. $\mathrm{K}_{a}=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HF}]}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Na}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{NaF}]}$
D. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
87. Which of the following salt solutions will be acidic?
A. KClO_{4}
B. $\mathrm{NH}_{4} \mathrm{Br}$
C. NaHCO_{3}
D. $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
88. In which of the following is $\mathrm{HSO}_{3}{ }^{-}$acting as a Brønsted-Lowry acid?
A. $\mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-}$
B. $\mathrm{NH}_{3}+\mathrm{HSO}_{3}{ }^{-} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{SO}_{3}{ }^{2-}$
C. $\mathrm{HSO}_{3}{ }^{-}+\mathrm{HPO}_{4}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{PO}_{4}{ }^{3-}$
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{HSO}_{3}^{-} \rightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{SO}_{3}$
89. What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$?
A. OH^{-}
B. $\mathrm{PO}_{4}{ }^{3-}$
C. $\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
90. Which of the following is correct if the four solutions listed are compared to one another?
A.

	Concentration	Relative Conductivity	Ionization
strong acid	0.50 M	highest	complete
weak acid	0.50 M	lowest	complete
strong base	1.0 M	highest	complete
weak base	1.0 M	lowest	complete

91. Which of the following is the strongest acid that can exist in an aqueous solution?
A. O^{2-}
B. $\mathrm{NH}_{2}{ }^{-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. HClO_{4}
92. Which of the following household products could have a $\mathrm{pH}=12.0$?
A. soda pop
B. tap water
C. lemon juice
D. oven cleaner
93. What is the pH of a 0.050 M KOH solution?
A. $\quad 0.30$
B. $\quad 1.30$
C. $\quad 12.70$
D. 13.70
94. What is the value of K_{b} for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$?
A. 1.3×10^{-12}
B. 6.2×10^{-8}
C. 1.6×10^{-7}
D. 7.5×10^{-3}
