95. Which of the following describes the net ionic reaction for the hydrolysis of $NH_4Cl_{(s)}$?

A.
$$\operatorname{NH}_{4}^{+}(aq) + \operatorname{Cl}_{(aq)}^{-} \rightleftharpoons \operatorname{NH}_{4}\operatorname{Cl}_{(s)}^{}$$

B. $\operatorname{NH}_{4}\operatorname{Cl}_{(s)}^{} \rightleftharpoons \operatorname{NH}_{4}^{+}(aq)^{} + \operatorname{Cl}_{(aq)}^{-}$
C. $\operatorname{Cl}_{(aq)}^{-} + \operatorname{H}_{2}\operatorname{O}_{(\ell)}^{} \rightleftharpoons \operatorname{HCl}_{(aq)}^{} + \operatorname{OH}_{(aq)}^{-}$
D. $\operatorname{NH}_{4}^{+}(aq)^{} + \operatorname{H}_{2}\operatorname{O}_{(\ell)}^{} \rightleftharpoons \operatorname{NH}_{3}(aq)^{} + \operatorname{H}_{3}\operatorname{O}_{(aq)}^{+}$

- 96. Which of the following salts will produce a solution with the highest pH?
 - A. 1.0 M NaNO₃
 - B. 1.0 M NaHSO₄
 - C. 1.0 M NaHCO₃
 - D. $1.0 \text{ M} \text{ NaH}_2\text{PO}_4$
- 97. *A substance which produces hydroxide ions in solution* is a definition of which of the following?
 - A. an Arrhenius acid
 - B. an Arrhenius base
 - C. a Brønsted-Lowry acid
 - D. a Brønsted-Lowry base
- 98. Which of the following is generally true of acids, but **not** for bases?
 - A. pH > 7
 - B. release H^+ in solution
 - C. conduct current when in solution
 - D. cause indicators to change colour
- 99. Which of the following 1.0 M solutions will have the highest electrical conductivity?
 - A. HI
 - B. HF
 - C. HCN
 - D. HNO₂

 $HOI + F^- \rightleftharpoons OI^- + HF$

Reactants are favoured in this equilibrium. Which of the following describes the relative strengths of the acids and the bases?

	Stronger Acid	Stronger Base
A.	HF	F ⁻
B.	HF	OI
C.	HOI	F ⁻
D.	HOI	OI

101. Which of the following is true for a neutral aqueous solution?

A. $[H_{3}O^{+}] = 0.0 \text{ M}$ B. $[H_{3}O^{+}] = [OH^{-}]$ C. $[H_{3}O^{+}] > [OH^{-}]$ D. $[H_{3}O^{+}] < [OH^{-}]$

102. Which of the following is a definition of pK_w ?

A. $pK_w = -\log K_w$

B.
$$pK_w = pH - pOH$$

- C. $pK_w = 7.0$ at $25^{\circ}C$
- D. $pK_w = [H_3O^+][OH^-]$

103. Consider the following equilibrium:

$$H_2CO_{3(aq)} + H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + HCO_3^-_{(aq)}$$

What is the equilibrium expression?

A.
$$K_a = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}$$

B. $K_a = \frac{[H_2CO_3]}{[H_3O^+][HCO_3^-]}$
C. $K_a = \frac{[H_2CO_3][H_2O]}{[H_3O^+][HCO_3^-]}$
D. $K_a = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3][H_2O]}$

104. Which of the following describes the net ionic equation for the hydrolysis of a NaNO₂ solution?

A.
$$\operatorname{NaNO}_{2(s)} \rightleftharpoons \operatorname{Na}_{(aq)}^{+} + \operatorname{NO}_{2(aq)}^{-}$$

B.
$$\operatorname{NO}_2(aq) + \operatorname{H}_2\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{HNO}_2(aq) + \operatorname{OH}_{(aq)}$$

C.
$$\operatorname{Na}_{(aq)}^{+} + 2\operatorname{H}_{2}\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{H}_{3}\operatorname{O}_{(aq)}^{+} + \operatorname{NaOH}_{(aq)}$$

D.
$$\operatorname{NaNO}_{2(s)} + \operatorname{H}_2O_{(\ell)} \rightleftharpoons \operatorname{NaOH}_{(aq)} + \operatorname{HNO}_{2(aq)}$$

105. The $HC_2O_4(aq)$ ion will act as

- A. a base since $K_a < K_b$
- B. a base since $K_a > K_b$
- C. an acid since $K_a < K_b$
- D. an acid since $K_a > K_b$
- 106. Which of the following is a property of **all** acidic solutions at 25° C?
 - A. They have a pH less than 7.0.
 - B. They have a pH greater than 7.0.
 - C. They cause phenolphthalein to turn pink.
 - D. They release hydrogen when placed on copper metal.
- 107. When a small solid sample is added to a solution of H_2SO_4 , a precipitate forms and the solution becomes less acidic. Which of the following substances could have caused these results?

A. Na_2SO_4 C. $Mg(OH)_2$ B. $Sr(OH)_2$ D. $Ca(NO_3)_2$

108. Consider the following reaction:

 $\text{HCN} + \text{CH}_3\text{NH}_2 \quad \rightleftharpoons \quad \text{CN}^- + \text{CH}_3\text{NH}_3^+$

Which of the following describes a conjugate acid-base pair in the equilibrium above?

	Acid	Base
A.	CN^-	HCN
B.	CH ₃ NH ₃ ⁺	CN^-
C.	HCN	CH ₃ NH ₃ ⁺
D.	CH ₃ NH ₃ ⁺	CH ₃ NH ₂

109. Which of the following is the weakest base?

- A. F⁻
- B. HS⁻
- C. CN⁻
- D. IO_3^{-}

110. Which of the following relationships is used to calculate K_w at 30°C ?

- A. $K_w = pH + pOH$
- B. $pK_w = -\log [H_3O^+]$
- C. $K_w = [H_3O^+][OH^-]$ D. $K_w = [H_3O^+] + [OH^-]$

111. What is the pOH of 0.2 M HNO_3 ?

- A. 5×10^{-14}
- B. 0.2
- C. 0.7
- D. 13.3

112. Which of the following K_a values represents the acid with the strongest conjugate base?

- A. $K_a = 4.2 \times 10^{-12}$
- B. $K_a = 9.5 \times 10^{-9}$
- C. $K_a = 2.0 \times 10^{-5}$
- D. $K_a = 7.8 \times 10^{-3}$

113. What is the dissociation equation for Na_2CO_3 in water?

- A. $\operatorname{Na_2CO}_{3(s)} \to \operatorname{Na^{2+}_{(aq)}} + \operatorname{CO}_{3}^{2-}_{(aq)}$ B. $\operatorname{Na_2CO}_{3(s)} \to 2\operatorname{Na^+_{(aq)}} + \operatorname{CO}_{3}^{2-}_{(aq)}$ C. $\operatorname{CO}_{3}^{2-}_{(aq)} + \operatorname{H_2O}_{(\ell)} \to \operatorname{HCO}_{3}^{-}_{(aq)} + \operatorname{OH^-_{(aq)}}$ D. $\operatorname{Na_2CO}_{3(s)} + 2\operatorname{H_2O}_{(\ell)} \to 2\operatorname{NaOH}_{(aq)} + \operatorname{H_2CO}_{3(aq)}$
- 114. Which of the following solutions has the highest pH?

A.	0.1 M HCl	C.	0.1M NaHS
B.	0.1M NaF	D.	$0.1 \text{ M } \text{NH}_4 \text{Cl}$

WRITTEN PROBLEMS

1. Consider the following Brønsted-Lowry equilibrium:

$$H_2SO_{3(aq)} + HPO_{4(aq)}^{2-} \rightleftharpoons H_2PO_{4(aq)}^{-} + HSO_{3(aq)}^{-}$$

- a) Identify the two Brønsted-Lowry acids in the above equilibrium.
- b) Define the term *conjugate acid*.
- 2. Consider the following equilibrium:

energy +
$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$

- a) Explain how pure water can have a pH = 7.30.
- b) Calculate the value of K_w for the sample of water with a pH = 7.30.
- 3. a) Write the equation for the predominant reaction of $HC_2O_4^-$ with HSO_3^- .

$HC_2O_4^-$	+	HSO ₃ ⁻	\rightleftharpoons	 +	
acid		base			

b) Identify a Brønsted-Lowry conjugate acid base pair from the above reaction.

Acid: _____

Base:

- 4. Calculate the $[OH^-]$ in 0.50 M $NH_{3(aq)}$.
- 5. Write the equation for the predominant reaction between HSO_4^- and $H_2PO_4^-$.
- A 0.20 M solution of a weak acid, HA, has a pH = 1.32.
 Use calculations and the table of "Relative Strengths of Brønsted-Lowry Acids and Bases" from the *Data Booklet* to determine the identity of the acid.
- 7. Calculate the pH of a solution prepared by mixing 15.0 mL of 0.50 M HCl with 35.0 mL of 1.0 M NaOH.
- 8. Consider a 1.0 M solution of NH_4F .
 - a) Write both hydrolysis reactions that occur when NH₄F is dissolved in water.
 - b) Will the above NH₄F solution be acidic, basic, or neutral? Support your answer with calculations.

9. Consider the 0.10 M solutions of the following two acids:

- a) What can you conclude about the acids that will explain these different pH values?
- b) Compare the volume of 0.10 M NaOH needed to neutralize equal volumes of each of these acid samples.
- 10. Will $HC_2O_4^-$ act predominantly as an acid or as a base in solution? Support your answer with calculations.
- 11. The two reactants in an acid-base reaction are $HNO_{2(aq)}$ and $HCO_{3(aq)}$.
 - a) Write the equation for the above reaction.
 - b) Define the term *conjugate acid-base pair*.
 - c) Write the formulas for a conjugate acid-base pair for the above reaction.
- 12. At 10.0°C, $K_w = 2.95 \times 10^{-15}$ for pure water.
 - a) Calculate the pH of water at 10.0°C.
- 13. At a particular temperature a 1.0 M H_2S solution has a pH = 3.75. Calculate the value of K_a at this temperature.
- 14. The ion $H_2PO_4^-$ is an amphiprotic anion.
 - a) Define the term *amphiprotic*.
 - b) Write the balanced equation for the reaction when $H_2PO_4^-$ reacts with HF.
- 15. Write an equation for a reaction in which H_2O acts only as a Brønsted-Lowry base.
- 16. Calculate the pH of $0.25 \text{ M Sr}(\text{OH})_2$.
- 17. Calculate the pH of $0.25 \text{ M } \text{NH}_4\text{Cl}$.

- 18. The cyanide ion, CN^- , is a Brønsted-Lowry base.
 - a) Define Brønsted-Lowry base.
 - b) Write the equation representing the reaction of CN^- with water.
 - c) Identify a conjugate pair in b) above.
- 19. Write an equation to show the ionization of water.
- 20. Calculate the pH of 1.50 M NH_3 .
- 21. Consider the following equilibria:

I.
$$CH_3COOH + OCN^- \rightleftharpoons HOCN + CH_3COO^-$$

II. $CH_3COOH + CIO^- \rightleftharpoons HCIO + CH_3COO^-$

- a) In equation I above, the reactants are favoured. Identify the stronger acid.
- b) In equation II above, the products are favoured. Identify the stronger acid.
- c) Consider the following reaction:

 $HOCN + ClO^- \rightleftharpoons OCN^- + HClO$

Does this reaction favour reactants or products? Explain.

- 22. At 60°C, the pH = 6.51 for pure water. Determine the value of K_w at this temperature.
- 23. Calculate the pH of $0.35 \text{ M H}_2\text{CO}_3$.
- 24. Write a chemical reaction showing an amphiprotic anion reacting as a base in water.
- 25. An acid-base reaction occurs between HSO_3^- and IO_3^- .
 - a) Write the equation for the equilibrium that results.
 - b) Identify one conjugate acid-base pair in the reaction.
 - c) State whether reactants or products are favoured, and explain how you arrived at your answer.
- 26. At 10°C, $K_w = 2.95 \times 10^{-15}$.
 - a) Determine the pH of water at 10°C.
 - b) State whether water at this temperature is acidic, basic or neutral, and explain.

- 27. Calculate the pH of $0.50 \text{ M H}_2\text{S}$.
- 28. a) Write an equation to represent the predominant reaction when $HC_2O_4^-$ is mixed with HSO_4^- .
 - b) Justify your statement by comparing K_a values.
 - c) Identify a conjugate acid-base pair.
 - d) Predict whether the equilibrium will favour the formation of reactants or products. Explain.
- 29. Write an equation representing the ionization of water and state both ion concentrations that exist for pure water to have a pH = 7.20.
- 30. Calculate the pH of 0.25 M NaHCO₃, a basic salt.
- 31. Write the net ionic equation for the acid-base reaction that occurs between $NaCN_{(aa)}$ and $NH_4Cl_{(aa)}$.
- 32. Define the term *amphiprotic* and give an example of an amphiprotic anion.

33. At 20°C, the ionization constant of water (K_w) is 6.76×10^{-15} . Calculate the $[H_3O^+]$ of water at 20°C.

34. Calculate the pH of 0.50 M NaF.

MULTIPLE - CHOICE ANSWERS

1	С	6	С	11	С	16	В	21	D	26	С	31	В	36	D	41	D	46	С
2	С	7	В	12	С	17	А	22	D	27	В	32	В	37	А	42	А	47	D
3	А	8	D	13	В	18	В	23	В	28	С	33	В	38	В	43	В	48	С
4	А	9	С	14	А	19	А	24	А	29	А	34	D	39	А	44	В	49	В
5	В	10	В	15	А	20	С	25	С	30	С	35	В	40	С	45	В	50	С
51	С	56	В	61	В	66	D	71	С	76	В	81	В	86	А	91	С	96	С
52	С	57	D	62	С	67	D	72	С	77	В	82	D	87	В	92	D	97	В
53	С	58	В	63	В	68	А	73	А	78	А	83	С	88	В	93	С	98	В
54	В	59	D	64	А	69	В	74	С	79	С	84	А	89	С	94	А	99	А
55	D	60	В	65	А	70	D	75	В	80	В	85	А	90	С	95	D	100	В
101	В	106	А	111	D														
102	А	107	В	112	А														
103	А	108	D	113	В														
104	В	109	D	114	С														
105	D	110	С																

WRITTEN ANSWERS

1. a) *For Example:*

Species 1:	H_2SO_3	$\leftarrow \frac{1}{2}$ mark
Species 2:	$H_2PO_4^-$	$\leftarrow \frac{1}{2}$ mark

b) For Example:

A conjugate acid is a species produced when a proton is accepted by a Brønsted-Lowry base.

 $\leftarrow 1 \text{ mark}$

2. a) A lower temperature causes a shift to the left.
The
$$[H_3O^+] = [OH^-] = 1 \times 10^{-7.30} = 5.0 \times 10^{-8} M$$
 $\leftarrow 1 \text{ mark}$
 $K_w = [H_3O^+] \times [OH^-] = (5.0 \times 10^{-8})(5.0 \times 10^{-8}) = 2.5 \times 10^{-15} \leftarrow 1 \text{ mark}$
3. a) $HC_2O_4^- + HSO_3^- \rightleftharpoons C_2O_4^{2-} + H_2SO_3$ $\downarrow \leftarrow 1 \text{ mark}$
b) $HC_2O_4^- / C_2O_4^{2-}$
acid base
OR
 HSO_3^- / H_2SO_3
base acid
4. $K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}} = 1.79 \times 10^{-5}$ $\leftarrow 1 \text{ mark}$
 $\begin{bmatrix} NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-\\ 0.50 & 0 & 0\\ \frac{[C]}{-x} + \frac{x}{x} + \frac{x}{x}\\ \frac{[F]}{[0.50 - x]} = \frac{(x)(x)}{(0.50 - x)} = 1.79 \times 10^{-5}$
Use assumption that $0.50 - x = 0.50$ or use the quadratic formula.
 $x = [OH^-] = 3.0 \times 10^{-3} M$

5. $HSO_4^- + H_2PO_4^- \rightleftharpoons SO_4^{2-} + H_3PO_4 \leftrightarrow 2$ marks

$$pH = 1.32 \\ [H_{3}O^{+}] = 0.048 M$$

$$|H_{3}O^{+}] = 0.048 M$$

$$|H_{3}O^{+}] = 0.048 M$$

$$|H_{3}O^{+}] = 0.048 H$$

$$|H_{3}O^{+}] = 0.048 H + 0.048 + 0.048 H + 0.0150 L \times 0.50 M = 7.50 \times 10^{-2} H + 1 mark$$

$$|H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{0.050 L} \times 1.0 M = 3.5 \times 10^{-2} mol$$

$$|H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{0.55} = 1.8 \times 10^{-4} H + 120 H + 120$$

9. a)

Acid HA is strong.b)The saAcid HB is weak.sample

The same volume of $NaOH_{(aq)}$ is needed for each acid sample.

7.

8.

10.
$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{5.9 \times 10^{-2}} = 1.7 \times 10^{-13}$$
 $\left\{ \leftarrow 1\frac{1}{2} \text{ marks} \right\}$

Since $K_a = 6.4 \times 10^{-5}$ which is greater than K_b , the ions act as an acid. $\left\{ \leftarrow 1\frac{1}{2} \text{ marks} \right\}$

11. a)
$$HNO_{2(aq)} + HCO_{3(aq)} \rightleftharpoons H_2CO_{3(aq)} + NO_{2(aq)} \leftarrow 2$$
 marks

b) A conjugate acid-base pair are two species whose formulas differ by a proton.

HNO₂ and NO₂⁻ **OR** H₂CO₃ and HCO₃⁻

$$K_w = 2.95 \times 10^{-15} = [H_3O^+][OH^-] \qquad \leftarrow 1 \text{ mark}$$

Since
$$[H_3O^+] = [OH^-]$$

 $[H_3O^+]^2 = 2.95 \times 10^{-15}$
 $[H_3O^+] = 5.43 \times 10^{-8} M$ $\leftarrow 1 \text{ mark}$
 $pH = 7.265$ $\leftarrow 1 \text{ mark}$

13.

12.

$$\begin{bmatrix} I \\ H_2S & + H_2O \rightleftharpoons H_3O^+ & + HS^- \\ 1.0 & 0 & 0 \\ \hline C \\ -1.78 \times 10^{-4} & +1.78 \times 10^{-4} & +1.78 \times 10^{-4} \\ \hline E \\ 1.0 - 1.78 \times 10^{-4} & 1.78 \times 10^{-4} & 1.78 \times 10^{-4} \\ \end{bmatrix} \leftarrow 2 \text{ marks}$$

c)

$$pH = 3.75$$

$$[H_{3}O^{+}] = 1.78 \times 10^{-4} M$$

$$K_{a} = \frac{[H_{3}O^{+}][HS^{-}]}{[H_{2}S]} = \frac{(1.78 \times 10^{-4})^{2}}{1.0 - 1.78 \times 10^{-4}} = 3.2 \times 10^{-8}$$

14.	a)	Amphiprotic describes the ability to act as an acid in one reaction and as a base in a different reaction.	$\left\{ \leftarrow 1 \text{ mark} \right\}$
	b)	$H_2PO_4^- + HF \rightleftharpoons H_3PO_4 + F^-$	$\leftarrow 2 \text{ marks}$
15.		$HSO_3^- + H_2O \rightleftharpoons H_3O^+ + SO_3^{2-}$	← 2 marks
16.		$[OH^{-}] = 0.50 \text{ M}$ pOH = 0.30 pH = 13.70	} ← 2 marks
17.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre> } ← 2 marks </pre>
		$K_{a} = 5.6 \times 10^{-10} = \frac{\left[H_{3}O^{+}\right]\left[NH_{3}\right]}{\left[NH_{4}^{+}\right]} = \frac{(x)(x)}{0.25 - x}$ $x = \left[H_{3}O^{+}\right] = 1.18 \times 10^{-5} M$ $pH = 4.93$	} ← 3 marks
18.	a)	A Brønsted-Lowry base is a proton acceptor.	\leftarrow 1 mark
	b)	$CN^{-} + H_2O \rightleftharpoons HCN + OH^{-}$	\leftarrow 2 marks
	c)	CN^- and HCN OR H ₂ O and OH ⁻	← 1 mark
19.		$2H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^{(aq)}$	← 2 marks
20.		$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	
		[I] 1.50 0 0	} ← 2 marks
		$\begin{bmatrix} \mathbf{C} \end{bmatrix} -x +x +x$	
		$[E] 1.50 - x \qquad x \qquad x$	J
		$\mathbf{K}_{b} = \frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}} = 1.79 \times 10^{-5}$	$\left. ight\} \leftarrow 1 mark$

$$K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{3}\right]}$$

$$= \frac{x^{2}}{1.50 - x}$$

$$x = \left[OH^{-}\right] = 5.18 \times 10^{-3}$$

$$pOH = 2.29$$

$$pH = 11.71$$

$$\leftarrow 2 \text{ marks}$$

21. a) HOCN

b)

23.

 $\leftarrow 1 \text{ mark}$

← 1 mark

 $\leftarrow 2 \text{ marks}$

 $\leftarrow 2 \text{ marks}$

c) Products are favoured because HOCN is a stronger acid than HClO.

22. pH = 6.51

CH₃COOH

$$\begin{bmatrix} H_3 O^+ \end{bmatrix} = 3.09 \times 10^{-7} \text{ M} = \begin{bmatrix} OH^- \end{bmatrix}$$

$$K_w = \begin{bmatrix} H_3 O^+ \end{bmatrix} \begin{bmatrix} OH^- \end{bmatrix} = (3.09 \times 10^{-7})(3.09 \times 10^{-7}) = 9.5 \times 10^{-14}$$

$$\begin{bmatrix} I \\ H_2CO_3 + H_2O \rightleftharpoons H_3O^+ + HCO_3^- \\ 0.35 & 0 & 0 \\ \hline C \\ -x & +x & +x \\ \hline E \\ 0.35 - x & x & x \end{bmatrix} \leftarrow 1\frac{1}{2} \text{ marks}$$

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[HCO_{3}^{-}\right]}{\left[H_{2}CO_{3}\right]} = 4.3 \times 10^{-7}$$

$$4.3 \times 10^{-7} = \frac{x^{2}}{0.35 - x}$$

$$x = \left[H_{3}O^{+}\right] = 3.88 \times 10^{-4} \text{ M}$$

$$pH = 3.41$$

$$\leftarrow 2\frac{1}{2} \text{ marks}$$

24.

 $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^- + OH^-$

25.	a)	$\text{HSO}_3^- + \text{IO}_3^- \rightleftharpoons \text{SO}_3^{2-} + \text{HIO}_3$	\leftarrow 1 mark (equilibrium arrow required)
	b)	HSO_3^- and SO_3^{2-} OR IO_3^- and HIC	$D_3 \leftarrow 1 \text{ mark}$
	c)	Reactants are favoured.	← 1 mark
		HSO_3^- is a weaker acid than HIO_3 OR	/ 1 mort
		IO_3^{-1} is a weaker base than SO_3^{2-1}	
26.	a)	$K_w = 2.95 \times 10^{-15} = [H_3O^+][O$	ΘH^{-}] $\leftarrow 1 mark$
		Since $\left[H_{3}O^{+}\right] = \left[OH^{-}\right]$,	
		$\left[\rm{H}_{3}\rm{O}^{+}\right]^{2} = 2.95 \times 10^{-15}$	
		$\left[H_{3}O^{+}\right] = 5.43 \times 10^{-8}$	← 1 mark
		pH = 7.265	←1 mark
	b)	Since $[H_3O^+] = [OH^-]$, the water is neutral	al. $\leftarrow 1 \text{ mark}$
27.		$ \begin{array}{cccc} H_2S & + & H_2O \rightleftharpoons H_3O^+ & + \\ [I] & 0.50 & 0 \\ \hline \\ [C] & -x & +x \\ \hline \\ \hline \\ [E] & 0.50 - x & x \\ (assume x is negligible) \\ \end{array} $	$ \begin{array}{c} - HS^{-} \\ 0 \\ +x \\ \hline x \end{array} \end{array} \right\} \leftarrow 1\frac{1}{2} \text{ mark} $
		$K_a = 9.1 \times 10^{-8} = \frac{[H_3O^+][HS^-]}{[H_2S]} = \frac{(x)(x)}{(0.50)}$	$\left.\begin{array}{c} x\\ 0\end{array}\right) \qquad \qquad \qquad \\ \left.\begin{array}{c} \leftarrow 1 \text{ mark} \end{array}\right.$
		$x = [H_3O^+] = 2.13 \times 10^{-4}$	← 1 mark
		pH = 3.67	$\leftarrow \frac{1}{2}$ mark
28.	a)	$HC_2O_4^- + HSO_4^- \rightleftharpoons H_2C_2O_4 + SO_4^-$	$\sim 1 \text{ mark}$
	b)	$K_a HSO_4^- > K_a HC_2O_4^-$	← 1 mark
	c)	$\mathrm{HSO_4}^-$ and $\mathrm{SO_4}^{2-}$) / 1
		OR $HC_2O_4^-$ and $H_2C_2O_4$	} ← 1 mark

d) Reactants are favoured since $K_a HSO_4^- < K_a H_2 C_2 O_4$

 $\leftarrow 2 \text{ marks}$

29.
$$H_2O_{(\ell)} + H_2O_{(\ell)} \rightleftharpoons H_3O_{(aq)}^+ + OH_{(aq)}^-$$
 $\leftarrow 1 \text{ mark}$
Since $pH = 7.20$, $[H_3O^+] = 6.3 \times 10^{-8} \text{ M}$ $\leftarrow 1 \text{ mark}$
 $[H_3O^+] = [OH^-] = 6.3 \times 10^{-8} \text{ M}$ $\leftarrow 1 \text{ mark}$
30. $\begin{bmatrix} HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^- \\ 0.25 & 0 & 0 \\ 0 & \downarrow \\ \hline 0.25 - x & x & x \\ \hline E] & 0.25 - x & x & x \\ \hline (assume x \text{ is negligible})$
 $K_b = \frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}} = \frac{[H_2CO_3][OH^-]}{[HCO_3^-]}$ $\leftarrow 1 \text{ mark}$
 $2.33 \times 10^{-8} = \frac{x^2}{0.25}$ $\leftarrow 1 \text{ mark}$
 $x = [OH^-] = 7.62 \times 10^{-5} \text{ M}$ $\leftarrow 1 \text{ mark}$
 $pOH = 4.12$
 $pH = 9.88$ \rbrace

31.
$$\operatorname{CN}_{(aq)}^{-} + \operatorname{NH}_{4(aq)}^{+} \rightleftharpoons \operatorname{HCN}_{(aq)} + \operatorname{NH}_{3(aq)} \leftarrow 2 \text{ marks}$$

32. **Definition:** Amphiprotic describes a substance that can act as either an acid or a base.

Example: HCO₃⁻

33.

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 6.76 \times 10^{-15} \qquad \leftarrow 1 \text{ mark}$$

Since $[H_{3}O^{+}] = [OH^{-}], [H_{3}O^{+}]^{2} = 6.76 \times 10^{-15}$

$$\left[H_{3}O^{+} \right] = 8.22 \times 10^{-8} \,\mathrm{M} \qquad \qquad \leftarrow 1 \,\mathrm{mark}$$

 \leftarrow 2 marks

$$\begin{bmatrix} I \\ 0.50 & 0 & 0 \\ \hline C \\ -x & +x & +x \\ \hline E \end{bmatrix} 0.50 - x & x & x \\ (assume x is negligible) \\ K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}} = 2.86 \times 10^{-11} = \frac{[HF][OH^{-}]}{[F^{-}]} \\ 2.86 \times 10^{-11} = \frac{x^{2}}{0.50} \\ K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}} = 2.86 \times 10^{-11} = \frac{(HF)[OH^{-}]}{[F^{-}]} \\ = \frac{100}{100} \\ + 1 \text{ mark} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ - 1 \text{ mark} \\ K_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ - 1 \text{ mark} \\ R_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ - 1 \text{ mark} \\ - 1 \text{ mark} \\ R_{b} = \frac{100}{100} \\ - 1 \text{ mark} \\ - 1 \text{ mar$$

34.