95. Which of the following describes the net ionic reaction for the hydrolysis of $\mathrm{NH}_{4} \mathrm{Cl}_{(s)}$?
A. $\quad \mathrm{NH}_{4}{ }_{(a q)}+\mathrm{Cl}_{(a q)}^{-} \rightleftarrows \mathrm{NH}_{4} \mathrm{Cl}_{(s)}$
B. $\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \rightleftarrows \mathrm{NH}_{4}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}$
C. $\mathrm{Cl}^{-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{HCl}_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
D. $\mathrm{NH}_{4}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{NH}_{3(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$
96. Which of the following salts will produce a solution with the highest pH ?
A. $1.0 \mathrm{M} \mathrm{NaNO}_{3}$
B. $1.0 \mathrm{M} \mathrm{NaHSO}_{4}$
C. $1.0 \mathrm{M} \mathrm{NaHCO}_{3}$
D. $1.0 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
97. A substance which produces hydroxide ions in solution is a definition of which of the following?
A. an Arrhenius acid
B. an Arrhenius base
C. a Brønsted-Lowry acid
D. a Brønsted-Lowry base
98. Which of the following is generally true of acids, but not for bases?
A. $\mathrm{pH}>7$
B. release H^{+}in solution
C. conduct current when in solution
D. cause indicators to change colour
99. Which of the following 1.0 M solutions will have the highest electrical conductivity?
A. HI
B. HF
C. HCN
D. HNO_{2}
100. Consider the following equilibrium:

$$
\mathrm{HOI}+\mathrm{F}^{-} \rightleftarrows \mathrm{OI}^{-}+\mathrm{HF}
$$

Reactants are favoured in this equilibrium. Which of the following describes the relative strengths of the acids and the bases?

	Stronger Acid	Stronger Base
A.	HF	F^{-}
B.	HF	OI^{-}
C.	HOI	F^{-}
D.	HOI	OI^{-}

101. Which of the following is true for a neutral aqueous solution?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0 \mathrm{M}$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
102. Which of the following is a definition of pK_{w} ?
A. $\mathrm{pK}_{w}=-\log \mathrm{K}_{w}$
B. $\mathrm{pK}_{w}=\mathrm{pH}-\mathrm{pOH}$
C. $\mathrm{pK}_{w}=7.0$ at $25^{\circ} \mathrm{C}$
D. $\mathrm{pK}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
103. Consider the following equilibrium:

$$
\mathrm{H}_{2} \mathrm{CO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{HCO}_{3}^{-}-(a q)
$$

What is the equilibrium expression?
A. $\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
B. $\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]}$
C. $\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]}$
D. $\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
104. Which of the following describes the net ionic equation for the hydrolysis of a NaNO_{2} solution?
A. $\quad \mathrm{NaNO}_{2(s)} \rightleftarrows \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{NO}_{2}^{-}{ }_{(a q)}$
B. $\mathrm{NO}_{2}^{-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{HNO}_{2(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
C. $\mathrm{Na}_{(a q)}^{+}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{NaOH}_{(a q)}$
D. $\mathrm{NaNO}_{2(s)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{NaOH}_{(a q)}+\mathrm{HNO}_{2(a q)}$
105. The $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)$ ion will act as
A. a base since $K_{a}<K_{b}$
B. a base since $\mathrm{K}_{a}>\mathrm{K}_{b}$
C. an acid since $\mathrm{K}_{a}<\mathrm{K}_{b}$
D. an acid since $\mathrm{K}_{a}>\mathrm{K}_{b}$
106. Which of the following is a property of all acidic solutions at $25^{\circ} \mathrm{C}$?
A. They have a pH less than 7.0.
B. They have a pH greater than 7.0.
C. They cause phenolphthalein to turn pink.
D. They release hydrogen when placed on copper metal.
107. When a small solid sample is added to a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$, a precipitate forms and the solution becomes less acidic. Which of the following substances could have caused these results?
A. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. $\mathrm{Sr}(\mathrm{OH})_{2}$
C. $\operatorname{Mg}(\mathrm{OH})_{2}$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
108. Consider the following reaction:

$$
\mathrm{HCN}+\mathrm{CH}_{3} \mathrm{NH}_{2} \underset{\mathrm{CN}^{-}}{ }+\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}
$$

Which of the following describes a conjugate acid-base pair in the equilibrium above?
A.

Acid	Base
CN^{-}	HCN
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	CN^{-}
HCN	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$

109. Which of the following is the weakest base?
A. F^{-}
B. HS^{-}
C. CN^{-}
D. $\mathrm{IO}_{3}{ }^{-}$
110. Which of the following relationships is used to calculate K_{w} at $30^{\circ} \mathrm{C}$?
A. $\mathrm{K}_{w}=\mathrm{pH}+\mathrm{pOH}$
B. $\mathrm{pK}_{w}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
C. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
D. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
111. What is the pOH of $0.2 \mathrm{M} \mathrm{HNO}_{3}$?
A. 5×10^{-14}
B. 0.2
C. 0.7
D. 13.3
112. Which of the following K_{a} values represents the acid with the strongest conjugate base?
A. $\mathrm{K}_{a}=4.2 \times 10^{-12}$
B. $\mathrm{K}_{a}=9.5 \times 10^{-9}$
C. $\mathrm{K}_{a}=2.0 \times 10^{-5}$
D. $\mathrm{K}_{a}=7.8 \times 10^{-3}$
113. What is the dissociation equation for $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water?
A. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)} \rightarrow \mathrm{Na}_{(a q)}^{2+}+\mathrm{CO}_{3}{ }_{(a q)}^{2-}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)} \rightarrow 2 \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{CO}_{3}{ }_{(a q)}^{2-}$
C. $\mathrm{CO}_{3}{ }_{(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{HCO}_{3(a q)}^{-}+\mathrm{OH}^{-}(a q)$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 2 \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2} \mathrm{CO}_{3(a q)}$
114. Which of the following solutions has the highest pH ?
A. $\quad 0.1 \mathrm{M} \mathrm{HCl}$
B. 0.1 M NaF
C. 0.1 M NaHS
D. $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$

WRITTEN PROBLEMS

1. Consider the following Brønsted-Lowry equilibrium:

$$
\mathrm{H}_{2} \mathrm{SO}_{3(a q)}+\mathrm{HPO}_{4(a q)}^{2-} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4(a q)}^{-}+\mathrm{HSO}_{3(a q)}^{-}
$$

a) Identify the two Brønsted-Lowry acids in the above equilibrium.
b) Define the term conjugate acid.
2. Consider the following equilibrium:

$$
\text { energy }+2 \mathrm{H}_{2} \mathrm{O} \underset{\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}}{ }
$$

a) Explain how pure water can have a $\mathrm{pH}=7.30$.
b) Calculate the value of K_{w} for the sample of water with a $\mathrm{pH}=7.30$.
3. a) Write the equation for the predominant reaction of $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$with $\mathrm{HSO}_{3}{ }^{-}$.

$$
\underset{\text { acid }}{\mathrm{HC}_{2} \mathrm{O}_{4}^{-}}+\underset{\text { base }}{\mathrm{HSO}_{3}^{-}} \stackrel{+}{\square}
$$

b) Identify a Brønsted-Lowry conjugate acid base pair from the above reaction.

Acid: \qquad

Base: \qquad
4. Calculate the $\left[\mathrm{OH}^{-}\right]$in $0.50 \mathrm{M} \mathrm{NH}_{3(a q)}$.
5. Write the equation for the predominant reaction between HSO_{4}^{-}and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$.
6. A 0.20 M solution of a weak acid, HA, has a $\mathrm{pH}=1.32$.

Use calculations and the table of "Relative Strengths of Brønsted-Lowry Acids and Bases" from the Data Booklet to determine the identity of the acid.
7. Calculate the pH of a solution prepared by mixing 15.0 mL of 0.50 M HCl with 35.0 mL of 1.0 M NaOH .
8. Consider a 1.0 M solution of $\mathrm{NH}_{4} \mathrm{~F}$.
a) Write both hydrolysis reactions that occur when $\mathrm{NH}_{4} \mathrm{~F}$ is dissolved in water.
b) Will the above $\mathrm{NH}_{4} \mathrm{~F}$ solution be acidic, basic, or neutral? Support your answer with calculations.
9. Consider the 0.10 M solutions of the following two acids:

Acid HA

$\mathrm{pH}=1.00$

Acid HB

$\mathrm{pH}=2.87$
a) What can you conclude about the acids that will explain these different pH values?
b) Compare the volume of 0.10 M NaOH needed to neutralize equal volumes of each of these acid samples.
10. Will $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$act predominantly as an acid or as a base in solution? Support your answer with calculations.
11. The two reactants in an acid-base reaction are $\mathrm{HNO}_{2(a q)}$ and $\mathrm{HCO}_{3}{ }_{(a q)}$.
a) Write the equation for the above reaction.
b) Define the term conjugate acid-base pair.
c) Write the formulas for a conjugate acid-base pair for the above reaction.
12. At $10.0^{\circ} \mathrm{C}, \mathrm{K}_{w}=2.95 \times 10^{-15}$ for pure water.
a) Calculate the pH of water at $10.0^{\circ} \mathrm{C}$.
13. At a particular temperature a $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution has a $\mathrm{pH}=3.75$. Calculate the value of K_{a} at this temperature.
14. The ion $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is an amphiprotic anion.
a) Define the term amphiprotic.
b) Write the balanced equation for the reaction when $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$reacts with HF .
15. Write an equation for a reaction in which $\mathrm{H}_{2} \mathrm{O}$ acts only as a Brønsted-Lowry base.
16. Calculate the pH of $0.25 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$.
17. Calculate the pH of $0.25 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$.
18. The cyanide ion, CN^{-}, is a Brønsted-Lowry base.
a) Define Brønsted-Lowry base .
b) Write the equation representing the reaction of CN^{-}with water.
c) Identify a conjugate pair in b) above.
19. Write an equation to show the ionization of water.
20. Calculate the pH of $1.50 \mathrm{M} \mathrm{NH}_{3}$.
21. Consider the following equilibria:

I.	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OCN}^{-}$	\rightleftarrows	$\mathrm{HOCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
II.	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{ClO}^{-}$	$\rightleftarrows \mathrm{HClO}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	

a) In equation \mathbf{I} above, the reactants are favoured. Identify the stronger acid.
b) In equation II above, the products are favoured. Identify the stronger acid.
c) Consider the following reaction:

$$
\mathrm{HOCN}+\mathrm{ClO}^{-} \rightleftarrows \mathrm{OCN}^{-}+\mathrm{HClO}
$$

Does this reaction favour reactants or products? Explain.
22. At $60^{\circ} \mathrm{C}$, the $\mathrm{pH}=6.51$ for pure water. Determine the value of K_{w} at this temperature.
23. Calculate the pH of $0.35 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$.
24. Write a chemical reaction showing an amphiprotic anion reacting as a base in water.
25. An acid-base reaction occurs between HSO_{3}^{-}and $\mathrm{IO}_{3}{ }^{-}$.
a) Write the equation for the equilibrium that results.
b) Identify one conjugate acid-base pair in the reaction.
c) State whether reactants or products are favoured, and explain how you arrived at your answer.
26. At $10^{\circ} \mathrm{C}, \mathrm{K}_{w}=2.95 \times 10^{-15}$.
a) Determine the pH of water at $10^{\circ} \mathrm{C}$.
b) State whether water at this temperature is acidic, basic or neutral, and explain.
27. Calculate the pH of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$.
28. a) Write an equation to represent the predominant reaction when $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$is mixed with $\mathrm{HSO}_{4}{ }^{-}$.
b) Justify your statement by comparing K_{a} values.
c) Identify a conjugate acid-base pair.
d) Predict whether the equilibrium will favour the formation of reactants or products. Explain.
29. Write an equation representing the ionization of water and state both ion concentrations that exist for pure water to have a $\mathrm{pH}=7.20$.
30. Calculate the pH of 0.25 M NaHCO 3 , a basic salt.
31. Write the net ionic equation for the acid-base reaction that occurs between $\mathrm{NaCN}_{(a q)}$ and $\mathrm{NH}_{4} \mathrm{Cl}_{(a q)}$.
32. Define the term amphiprotic and give an example of an amphiprotic anion.
33. At $20^{\circ} \mathrm{C}$, the ionization constant of water $\left(\mathrm{K}_{w}\right)$ is 6.76×10^{-15}. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of water at $20^{\circ} \mathrm{C}$.
34. Calculate the pH of 0.50 M NaF .

1	C	6	C	11	C	16	B	21	D	26	C	31	B	36	D	41	D	46	C
2	C	7	B	12	C	17	A	22	D	27	B	32	B	37	A	42	A	47	D
3	A	8	D	13	B	18	B	23	B	28	C	33	B	38	B	43	B	48	C
4	A	9	C	14	A	19	A	24	A	29	A	34	D	39	A	44	B	49	B
5	B	10	B	15	A	20	C	25	C	30	C	35	B	40	C	45	B	50	C
51	C	56	B	61	B	66	D	71	C	76	B	81	B	86	A	91	C	96	C
52	C	57	D	62	C	67	D	72	C	77	B	82	D	87	B	92	D	97	B
53	C	58	B	63	B	68	A	73	A	78	A	83	C	88	B	93	C	98	B
54	B	59	D	64	A	69	B	74	C	79	C	84	A	89	C	94	A	99	A
55	D	60	B	65	A	70	D	75	B	80	B	85	A	90	C	95	D	100	B
101	B	106	A	111	D														
102	A	107	B	112	A														
103	A	108	D	113	B														
104	B	109	D	114	C														
105	D	110	C																

WRITTEN ANSWERS

1. a) For Example:

Species 1: $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$
Species 2: $\quad \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
$\leftarrow \frac{1}{2}$ mark
$\leftarrow \frac{1}{2}$ mark
b) For Example:

A conjugate acid is a species produced when a proton is accepted by a Brønsted-Lowry base.
2. a) A lower temperature causes a shift to the left. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$drops as a result, and the pH increases.
b)

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7.30}=5.0 \times 10^{-8} \mathrm{M} & \leftarrow \mathbf{1} \text { mark } \\
\mathrm{K}_{w} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=\left(5.0 \times 10^{-8}\right)\left(5.0 \times 10^{-8}\right)=2.5 \times 10^{-15} & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

3. a) $\left.\underset{\text { base }}{\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}+\underset{\text { acid }}{\mathrm{HSO}_{3}{ }^{-}} \stackrel{\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}}{ }+\underline{\mathrm{H}_{2} \mathrm{SO}_{3}}}\right\} \leftarrow \mathbf{1}$ mark.
b) $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-} / \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
acid $\left.\begin{array}{c}\text { base } \\ \text { OR } \\ \mathrm{HSO}_{3}^{-} \\ \text {base } \\ \text { acid } \\ \mathrm{H}_{2} \mathrm{SO}_{3}\end{array}\right\} \leftarrow \mathbf{1}$ mark.
4. $\quad \mathrm{K}_{b}=\frac{\mathrm{K}_{w}}{\mathrm{~K}_{a}}=\frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}}=1.79 \times 10^{-5}$
$\leftarrow \mathbf{1}$ mark

	NH_{3}	$+\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	NH_{4}^{+}	+	OH^{-}
$[\mathrm{I}]$	0.50			0	0	
$[\mathrm{C}]$	$-x$			$+x$	$+x$	
$[\mathrm{E}]$	$0.50-x$			x	x	

$$
\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{(x)(x)}{(0.50-x)}=1.79 \times 10^{-5}
$$

Use assumption that $0.50-x \approx 0.50$ or use the quadratic formula.

$$
x=\left[\mathrm{OH}^{-}\right]=3.0 \times 10^{-3} \mathrm{M}
$$

5. $\quad \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftarrows \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{PO}_{4}$
6.

$$
\begin{aligned}
\mathrm{pH} & =1.32 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =0.048 \mathrm{M}
\end{aligned}
$$

| | HA | $+\mathrm{H}_{2} \mathrm{O}$ | \rightleftarrows | $\mathrm{H}_{3} \mathrm{O}^{+}$ | + |
| :---: | :---: | :---: | :---: | :---: | :---: | A^{-}.

$$
\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{(0.048)(0.048)}{0.152}=1.5 \times 10^{-2}
$$

The acid is: $\mathrm{H}_{2} \mathrm{SO}_{3}$
7. moles $\mathrm{HCl}=0.0150 \mathrm{~L} \times 0.50 \mathrm{M}=7.50 \times 10^{-3} \mathrm{~mol}$
moles $\mathrm{NaOH}=0.0350 \mathrm{~L} \times 1.0 \mathrm{M}=3.5 \times 10^{-2} \mathrm{~mol}$
excess moles $\mathrm{NaOH}=3.5 \times 10^{-2} \mathrm{~mol}-7.50 \times 10^{-3} \mathrm{~mol}=2.75 \times 10^{-2} \mathrm{~mol}$
$[\mathrm{NaOH}]=\left[\mathrm{OH}^{-}\right]=\frac{2.75 \times 10^{-2} \mathrm{~mol}}{0.050 \mathrm{~L}}=0.55 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{0.55}=1.8 \times 10^{-4}$

$$
\mathrm{pH}=13.74
$$

8. a) $\quad \mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \underset{ }{\rightleftarrows} \mathrm{NH}_{3(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$
$\leftarrow \mathbf{1}$ mark
$\mathrm{F}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{HF}_{(a q)}+\mathrm{OH}_{(a q)}^{-}$
$\leftarrow 1$ mark
b) $\quad \mathrm{K}_{a}$ for $\mathrm{NH}_{4}^{+}=5.6 \times 10^{-10}$
K_{b} for $\mathrm{F}^{-}=\frac{\mathrm{K}_{w}}{\mathrm{~K}_{a}}=\frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}}=2.9 \times 10^{-11}$

Since $\mathrm{K}_{a}>\mathrm{K}_{b}$, the solution is acidic.
9. a) Acid HA is strong. Acid HB is weak.
b) The same volume of $\mathrm{NaOH}_{(a q)}$ is needed for each acid sample.
10.

$$
\left.\mathrm{K}_{b}=\frac{\mathrm{K}_{w}}{\mathrm{~K}_{a}}=\frac{1.0 \times 10^{-14}}{5.9 \times 10^{-2}}=1.7 \times 10^{-13} \quad\right\} \leftarrow \mathbf{1} \frac{\mathbf{1}}{\mathbf{2}} \text { marks }
$$

Since $\mathrm{K}_{a}=6.4 \times 10^{-5}$ which is greater than K_{b}, the ions act as an acid.
11. a) $\mathrm{HNO}_{2(a q)}+\mathrm{HCO}_{3(a q)}^{-} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3(a q)}+\mathrm{NO}_{2}^{-}{ }_{(a q)} \quad \leftarrow \mathbf{2}$ marks
b) A conjugate acid-base pair are two species whose formulas differ by a proton.

$$
\mathrm{HNO}_{2} \text { and } \mathrm{NO}_{2}^{-} \text {OR } \mathrm{H}_{2} \mathrm{CO}_{3} \text { and } \mathrm{HCO}_{3}^{-}
$$

12.

$$
\mathrm{K}_{w}=2.95 \times 10^{-15}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$\leftarrow 1$ mark
Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} } & =2.95 \times 10^{-15} & & \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =5.43 \times 10^{-8} \mathrm{M} & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
\mathrm{pH} & =7.265 & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

13.

$\left.\begin{array}{c|ccccc} & \mathrm{H}_{2} \mathrm{~S} & +\mathrm{H}_{2} \mathrm{O} & \leftarrow & \mathrm{H}_{3} \mathrm{O}^{+} & + \\ {[\mathrm{I}]} & 1.0 & & 0 & \mathrm{HS}^{-} \\ {[\mathrm{C}]} & -1.78 \times 10^{-4} & & & +1.78 \times 10^{-4} & +1.78 \times 10^{-4} \\ \hline[\mathrm{E}] & 1.0-1.78 \times 10^{-4} & & & 1.78 \times 10^{-4} & 1.78 \times 10^{-4}\end{array}\right\} \leftarrow \mathbf{2}$ marks

$$
\begin{aligned}
\mathrm{pH} & =3.75 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1.78 \times 10^{-4} \mathrm{M} \\
\mathrm{~K}_{a} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{\left(1.78 \times 10^{-4}\right)^{2}}{1.0-1.78 \times 10^{-4}}=3.2 \times 10^{-8}
\end{aligned}
$$

14. a) Amphiprotic describes the ability to act as an acid in one reaction and as a base in a different reaction.
b) $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HF} \rightleftarrows \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{F}^{-}$
$\} \leftarrow 1$ mark
$\leftarrow 2$ marks
$\leftarrow 2$ marks
$\} \leftarrow 2$ marks
$\mathrm{K}_{a}=5.6 \times 10^{-10}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{(x)(x)}{0.25-x}$

$$
x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.18 \times 10^{-5} \mathrm{M}
$$

$$
\mathrm{pH}=4.93
$$

18. a) A Brønsted-Lowry base is a proton acceptor.
b) $\quad \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{HCN}+\mathrm{OH}^{-}}{\rightleftarrows}$
c) $\quad \mathrm{CN}^{-}$and HCN OR $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
$\leftarrow \mathbf{1}$ mark
$\leftarrow \mathbf{2}$ marks
$\leftarrow \mathbf{1}$ mark
$\leftarrow 2$ marks
$\leftarrow 2$ marks

$$
\mathrm{K}_{b}=\frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}}=1.79 \times 10^{-5}
$$

$$
\begin{aligned}
\mathrm{K}_{b} & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \\
& =\frac{x^{2}}{1.50-x} \\
x & =\left[\mathrm{OH}^{-}\right]=5.18 \times 10^{-3} \\
\mathrm{pOH} & =2.29 \\
\mathrm{pH} & =11.71
\end{aligned}
$$

$$
\leftarrow 2 \text { marks }
$$

21. a) HOCN

$$
\leftarrow \mathbf{1} \text { mark }
$$

b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) Products are favoured because HOCN is a stronger acid than HClO .

$\leftarrow \mathbf{1}$ mark

 $\} \leftarrow \mathbf{2}$ marks22.

$$
\left.\begin{array}{rlrl}
\mathrm{pH} & =6.51 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} & =3.09 \times 10^{-7} \mathrm{M}=\left[\mathrm{OH}^{-}\right] \\
\mathrm{K}_{w} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left(3.09 \times 10^{-7}\right)\left(3.09 \times 10^{-7}\right)=9.5 \times 10^{-14}
\end{array}\right\} \leftarrow \mathbf{3} \text { marks }
$$

23.

$\left.\begin{array}{c|ccccc} & \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} & \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}}{ }+\mathrm{HCO}_{3}^{-} \\ {[\mathrm{I}]} & 0.35 & & 0 & 0 \\ {[\mathrm{C}]} & -x & & & +x & +x \\ \hline[\mathrm{E}] & 0.35-x & & x & x\end{array}\right\} \leftarrow \mathbf{1} \frac{\mathbf{1}}{\mathbf{2}} \mathbf{\text { marks }}$

$$
\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4.3 \times 10^{-7}
$$

$$
\begin{aligned}
4.3 \times 10^{-7} & =\frac{x^{2}}{0.35-x} \\
x & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.88 \times 10^{-4} \mathrm{M} \\
\mathrm{pH} & =3.41
\end{aligned}
$$

24.

$$
\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}}{ }
$$

$$
\leftarrow 2 \text { marks }
$$

25. a) $\mathrm{HSO}_{3}^{-}+\mathrm{IO}_{3}^{-} \rightleftarrows \mathrm{SO}_{3}{ }^{2-}+\mathrm{HIO}_{3} \quad \leftarrow \mathbf{1}$ mark (equilibrium arrow required)
b) $\quad \mathrm{HSO}_{3}^{-}$and $\mathrm{SO}_{3}{ }^{2-} \quad \mathrm{OR} \quad \mathrm{IO}_{3}^{-}$and HIO_{3}
c) Reactants are favoured.
$\mathrm{HSO}_{3}{ }^{-}$is a weaker acid than HIO_{3} OR
$\mathrm{IO}_{3}{ }^{-}$is a weaker base than $\mathrm{SO}_{3}{ }^{2-}$
26. a)

$$
\mathrm{K}_{w}=2.95 \times 10^{-15}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$\leftarrow 1$ mark
$\leftarrow \mathbf{1}$ mark
$\leftarrow 1$ mark
$\leftarrow 1$ mark
Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$,

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} } & =2.95 \times 10^{-15} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =5.43 \times 10^{-8} \\
\mathrm{pH} & =7.265
\end{aligned}
$$

$\leftarrow \mathbf{1}$ mark
$\leftarrow 1$ mark
$\leftarrow 1$ mark
$\leftarrow \mathbf{1} \frac{1}{2}$ mark
$\} \leftarrow 1 \operatorname{mark}$
$\leftarrow \mathbf{1}$ mark
$\leftarrow \frac{1}{2}$ mark

$$
\begin{aligned}
\mathrm{K}_{a} & =9.1 \times 10^{-8}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{(x)(x)}{(0.50)} \\
x & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.13 \times 10^{-4} \\
\mathrm{pH} & =3.67
\end{aligned}
$$

28. a) $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}+\mathrm{HSO}_{4}{ }^{-} \rightleftarrows \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{SO}_{4}{ }^{2-}$
b) $\quad \mathrm{K}_{a} \mathrm{HSO}_{4}^{-}>\mathrm{K}_{a} \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
c) $\quad \mathrm{HSO}_{4}^{-}$and $\mathrm{SO}_{4}{ }^{2-}$

OR $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
d) Reactants are favoured since $\mathrm{K}_{a} \mathrm{HSO}_{4}^{-}<\mathrm{K}_{a} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\leftarrow 1$ mark
$\leftarrow \mathbf{1}$ mark

29.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \stackrel{\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}}{ } & \leftarrow \mathbf{1} \text { mark } \\
\text { Since } \mathrm{pH}=7.20,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-8} \mathrm{M} & \leftarrow \mathbf{1} \text { mark } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=6.3 \times 10^{-8} \mathrm{M}} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

30.

	$\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{H}_{2} \mathrm{CO}_{3}$	+	OH^{-}
$[\mathrm{I}]$	0.25		0	0	
$[\mathrm{C}]$	$-x$			$+x$	$+x$
$[\mathrm{E}]$	$0.25-x$			x	x

(assume x is negligible)
$\mathrm{K}_{b}=\frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$
$\leftarrow 1$ mark
$2.33 \times 10^{-8}=\frac{x^{2}}{0.25}$
$x=\left[\mathrm{OH}^{-}\right]=7.62 \times 10^{-5} \mathrm{M}$
$\mathrm{pOH}=4.12$ $\mathrm{pH}=9.88$
$\leftarrow \mathbf{1}$ mark
$\leftarrow 1$ mark
$\leftarrow 1$ mark
$\} \leftarrow \mathbf{1}$ mark
31. $\quad \mathrm{CN}^{-}{ }_{(a q)}+\mathrm{NH}_{4}^{+}{ }_{(a q)} \rightleftarrows \mathrm{HCN}_{(a q)}+\mathrm{NH}_{3(a q)}$
$\leftarrow \mathbf{2}$ marks
32. Definition: Amphiprotic describes a substance that can act as either an acid or a base.

Example: $\mathrm{HCO}_{3}{ }^{-}$
33.

$$
\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=6.76 \times 10^{-15}
$$

$\leftarrow \mathbf{1}$ mark

Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=6.76 \times 10^{-15}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.22 \times 10^{-8} \mathrm{M} \quad \leftarrow \mathbf{1} \text { mark }
$$

34.

$$
\} \leftarrow \mathbf{1} \operatorname{mark}
$$

$$
\begin{aligned}
& \begin{array}{c|ccccc}
& \mathrm{F}^{-} & +\mathrm{H}_{2} \mathrm{O} & \rightleftarrows & \mathrm{HF} & + \\
{[\mathrm{I}]} & 0.50 & & & \mathrm{OH}^{-} \\
{[\mathrm{C}]} & -x & & & 0 & 0 \\
\hline[\mathrm{E}] & 0.50-x & & & x & +x \\
\hline
\end{array} \\
& \text { (assume } x \text { is negligible) } \\
& \mathrm{K}_{b}=\frac{\mathrm{K}_{w}}{\mathrm{~K}_{a}}=\frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}}=2.86 \times 10^{-11}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]} \\
& 2.86 \times 10^{-11}=\frac{x^{2}}{0.50} \\
& x=\left[\mathrm{OH}^{-}\right]=3.78 \times 10^{-6} \mathrm{M} \\
& \mathrm{pOH}=5.42 \\
& \mathrm{pH}=8.58
\end{aligned}
$$

