Assignment #3 KEY

April 9, 2018 10:18 AM

26. mass of CS₂ (based on C) = 17.5 g C x $\frac{1 \text{ mol C}}{12.0 \text{ g C}}$ x $\frac{1 \text{ mol CS}_2}{5 \text{ mol C}}$ x $\frac{76.2 \text{ g CS}_2}{1 \text{ mol CS}_2}$ = 22.2 g

mass of CS₂ (based on SO₂) = 39.5 g SO₂ × $\frac{1 \text{ mol SO}_2}{64.1 \text{ g SO}_2}$ × $\frac{1 \text{ mol CS}_2}{2 \text{ mol SO}_2}$ × $\frac{76.2 \text{ g CS}_2}{1 \text{ mol CS}_2}$ = 23.5 g

Since C produces the least amount of CS_2 , then the mass of CS_2 produced is **22.2 g**. The SO_2 is present in excess, so the mass of SO_2 used can be calculated arbitrarily based on the mass of C.

mass of SO₂ used = $17.5 \text{ gC} \times \frac{1 \text{ mol C}}{12.0 \text{ gC}} \times \frac{2 \text{ mol SO}_2}{5 \text{ mol C}} \times \frac{64.1 \text{ gSO}_2}{1 \text{ mol SO}_2} = 37.4 \text{ g}$

mass of SO₂ in excess = 39.5 - 37.4 = 2.1 g

27. mass of NO (based on Cu) = 87.0 g Cu x $\frac{1 \text{ mol Cu}}{63.5 \text{ g Cu}}$ x $\frac{2 \text{ mol NO}}{3 \text{ mol Cu}}$ x $\frac{30.0 \text{ g NO}}{1 \text{ mol NO}}$ = 27.4 g mass of NO (based on HNO₃) = 225 g HNO₃ x $\frac{1 \text{ mol HNO}_3}{63.0 \text{ g HNO}_3}$ x $\frac{2 \text{ mol NO}}{8 \text{ mol HNO}_3}$ x $\frac{30.0 \text{ g NO}}{1 \text{ mol NO}}$ = 26.8 g Since HNO₃ produces the least amount of NO, then the mass of NO produced is **26.8 g**. Now find the mass of Cu in excess, based on the amount of HNO₃ used. mass of Cu used = 225 g HNO₃ x $\frac{1 \text{ mol HNO}_3}{63.0 \text{ g HNO}_3}$ x $\frac{3 \text{ mol Cu}}{8 \text{ mol HNO}_3}$ x $\frac{63.5 \text{ g Cu}}{1 \text{ mol Cu}}$ = 85.0 g mass of Cu in excess = 87.0 - 85.0 = **2.0 g**

28. mass of P₄ [based on Ca₃(PO₄)₂] = 41.5 g Ca₃(PO₄)₂ x
$$\frac{1 \text{ mol Ca}_3(PO_4)_2}{310.3 \text{ g Ca}_3(PO_4)_2}$$
 x $\frac{1 \text{ mol P}_4}{2 \text{ mol Ca}_3(PO_4)_2}$
x $\frac{124.0 \text{ g P}_4}{1 \text{ mol P}_4}$ = 8.29 g

mass of P₄ (based on SiO₂) = 26.5 g SiO₂ x $\frac{1 \text{ mol SiO}_2}{60.1 \text{ g SiO}_2}$ x $\frac{1 \text{ mol P}_4}{6 \text{ mol SiO}_2}$ x $\frac{124.0 \text{ g P}_4}{1 \text{ mol P}_4}$ = 9.11 g mass of P₄ (based on C) = 7.80 g C x $\frac{1 \text{ mol C}}{12.0 \text{ g C}}$ x $\frac{1 \text{ mol P}_4}{10 \text{ mol C}}$ x $\frac{124.0 \text{ g P}_4}{1 \text{ mol P}_4}$ = 8.06 g

Since C produces the least amount of P₄, then the mass of P₄ produced is **8.06 g**. Next, calculate the masses of both Ca₃(PO₄)₂ and SiO₂ used by the C: mass of Ca₃(PO₄)₂ used = 7.80 gC x $\frac{1 \text{ mol C}}{12.0 \text{ gC}}$ x $\frac{2 \text{ mol Ca}_3(PO_4)_2}{10 \text{ mol C}}$ x $\frac{310.3 \text{ gCa}_3(PO_4)_2}{1 \text{ mol Ca}_3(PO_4)_2} = 40.3 \text{ g}$

mass of Ca₃(PO₄)₂ in excess = 41.5 - 40.3 = **1.2 g** mass of SiO₂ used = 7.80 g C x $\frac{1 \text{ mol C}}{12.0 \text{ g C}} \times \frac{6 \text{ mol SiO}_2}{10 \text{ mol C}} \times \frac{60.1 \text{ g SiO}_2}{1 \text{ mol SiO}_2} = 23.4 \text{ g}$

mass of SiO₂ in excess = 26.5 - 23.4 = 3.1 g

29. mass of Br₂ (based on K₂Or₂O₇) = 25.0 g K₂Or₂O₇ x $\frac{1 \text{ mol } \text{K}_2 \text{Cr}_2 \text{O}_7}{294.2 \text{ g } \text{K}_2 \text{Or}_2 \text{O}_7}$ x $\frac{3 \text{ mol } \text{Br}_2}{1 \text{ mol } \text{K}_2 \text{Or}_2 \text{O}_7}$ x $\frac{159.8 \text{ g } \text{Br}_2}{1 \text{ mol } \text{K}_2 \text{Or}_2 \text{O}_7}$ x $\frac{1 \text{ mol } \text{K}_2 \text{Or}_2 \text{O}_7}{1 \text{ mol } \text{K}_2 \text{Or}_2 \text{O}_7}$ x $\frac{159.8 \text{ g } \text{Br}_2}{1 \text{ mol } \text{Br}_2}$

mass of Br₂ (based on KBr) = 55.0 g KBr x $\frac{1 \text{ mol KBr}}{119.0 \text{ g KBr}}$ x $\frac{3 \text{ mol Br}_2}{6 \text{ mol KBr}}$ = 159.8 g Br₂ mass of Br₂ (based on H₂SO₄) = 60.0 g H₂SO₄ x $\frac{1 \text{ mol H}_2SO_4}{98.1 \text{ g H}_2SO_4}$ x $\frac{3 \text{ mol Br}_2}{7 \text{ mol H}_2SO_4}$ x $\frac{159.8 \text{ g Br}_2}{1 \text{ mol Br}_2}$ = 36.9 g

= 41.9 g

KBr is the limiting reactant (it produces the least amount of Br₂). K₂Or₂O₇ and H₂SO₄ are in excess. Calculate the mass of K₂Or₂O₇ and H₂SO₄ present in excess, arbitrarily based on the mass of KBr.

mass of K₂Cr₂O₇ used = 55.0 g KBr x
$$\frac{1 \text{ mol KBr}}{119.0 \text{ g KBr}}$$
 x $\frac{1 \text{ mol K}_2\text{Cr}_2\text{O}_7}{6 \text{ mol KBr}}$ x $\frac{294.2 \text{ g K}_2\text{Cr}_2\text{O}_7}{1 \text{ mol K}_2\text{Cr}_2\text{O}_7}$ = 22.7 g
mass of K₂Cr₂O₇ in excess = 25.0 - 22.7 = **2.3 g**
mass of H₂SO₄ used = 55.0 g KBr x $\frac{1 \text{ mol KBr}}{119.0 \text{ g KBr}}$ x $\frac{7 \text{ mol H}_2\text{SO}_4}{6 \text{ mol KBr}}$ x $\frac{98.1 \text{ g H}_2\text{SO}_4}{1 \text{ mol H}_2\text{SO}_4}$ = 52.9 g
mass of H₂SO₄ in excess = 60.0 - 52.9 = **7.1 g**

30. volume of CO₂ (based on C₅H₁₂) = 0.0250 L C₅H₁₂ x $\frac{626.0 \text{ g C}_5\text{H}_{12}}{1 \text{ LC}_5\text{H}_{12}} \times \frac{1 \text{ mol C}_5\text{H}_{12}}{72.0 \text{ g C}_5\text{H}_{12}} \times \frac{5 \text{ mol CO}_2}{1 \text{ mol C}_5\text{H}_{12}}$ x $\frac{22.4 \text{ LCO}_2}{1 \text{ mol CO}_2}$ = 24.3 L

volume of CO₂ (based on O₂) = 40.0 L O₂ x $\frac{1 \text{ mol } O_2}{22.4 \text{ L } O_2}$ x $\frac{5 \text{ mol } CO_2}{8 \text{ mol } O_2}$ x $\frac{22.4 \text{ L } CO_2}{1 \text{ mol } CO_2}$ = 25.0 L Hence, the C₅H₁₂ is the limiting reactant and **24.3 L** of CO₂(g) will be produced.

31. moles of HCl = 0.100
$$\frac{\text{mol}}{\text{L}} \times 0.0500 \text{ L} = 5.00 \times 10^{-3} \text{ mol}$$

moles of NaCl (based on HCl) = 5.00 x 10⁻³ mol HCl x $\frac{1 \text{ mol NaCl}}{1 \text{ mol HCl}} = 5.00 \times 10^{-3} \text{ mol}$
moles of NaOH = 0.200 $\frac{\text{mol}}{\text{L}} \times 0.0300 \text{ L} = 6.00 \times 10^{-3} \text{ mol}$
moles of NaCl (based on NaOH) = 6.00 x 10⁻³ mol NaOH x $\frac{1 \text{ mol NaCl}}{1 \text{ mol NaOH}} = 6.00 \times 10^{-3} \text{ mol}$
Since the NaOH can produce more NaCl, the NaOH is in excess.

32. mass of BaBr₂ [based on Ba(OH)₂] = 0.250 g Ba(OH)₂ ×
$$\frac{1 \text{ mol Ba}(OH)_2}{171.3 \text{ g Ba}(OH)_2}$$
 × $\frac{1 \text{ mol BaBr}_2}{1 \text{ mol Ba}(OH)_2}$
× $\frac{297.1 \text{ g BaBr}_2}{1 \text{ mol BaBr}_2}$ = 0.434 g
moles of HBr = 0.125 $\frac{\text{mol}}{1.25}$ × 0.0150 L = 1.875 × 10⁻³ mol

mass of BaBr₂ (based on HBr) = 1.875×10^{-3} mol HBr $\times \frac{1 \text{ mol BaBr}_2}{2 \text{ mol HBr}} \times \frac{297.1 \text{ g BaBr}_2}{1 \text{ mol BaBr}_2} = 0.279 \text{ g}$ Since HBr is the limiting reactant, **0.279 g** of BaBr₂ can be formed.