

Atomic Theory Timeline

The atomic model has changed over time.

For over two centuries, scientists have created <u>different models</u> of the atom.

As scientists have learned more and more about atoms, the atomic model has changed.

But First, Democritus! Democritus was a <u>Greek philosopher (</u>470-380 B.C.) who is the father of modern atomic thought. He proposed that matter could <u>NOT</u> be divided into smaller pieces forever.

He claimed that matter was made of small, hard particles that he called "<u>atomos</u>"

<text><text><text><text><text><text><text><text>

@ W	/hat's the m	nass num	ber?	b	works)
ma	ss number = r	number of p	rotons + num	ber of neutrons	
N	/hat is the ma	ss number o	of these aton	าร?	
	Atoms	Protons	Neutrons	Mass number	
	helium	2	2	4	
	copper	29	35	64	
	cobalt	27	32	59	
	iodine	53	74	127	
	germanium	32	41	73	
P	- 28 of 47			© Boardworks Ltd 2	007

H	ow many n	eutrons?		b	oard works
num	nber of neutro nber of neutro	ns = mass r ns = mass r	number - nun number - ator	nber of protons mic number	
Ho	ow many neut	rons are the	ere in these a	atoms?	
	Atoms	Mass number	Atomic number	Neutrons	
	helium	4	2	2	
	fluorine	19	9	10	
	strontium	88	38	50	
	zirconium	91	40	51	
	uranium	238	92	146	
D	29 of 47			© Boardworks Ltd 2	2007

Isotopes of	f carbon		
There is als	so more than	one isotope	e of carbon:
	Isotope	Protons	Neutrons
	¹² C	6	6
	¹³ C	6	7
	¹⁴ C	6	8
All isotopes electrons.	s of carbon h	ave 6 protor	ns and so h
Because che electrons the theorem of the second sec	nemical reac	tivity depend of the isotop	ds on the nເ es of carbo
33 of 26			

Atom	ic Mass vs M	ass Number		board works
The a weigh deper speak abund	atomic mass (or ted [*] average of the ids on the abunda ting, the atomic ma lant isotope. The ur	atomic weight) of masses of its <u>isoto</u> ance of each isoto ass is closest to iso hits are <i>unified atom</i>	of each <u>element</u> is <u>pes</u> where the weigh pe in nature. Roug otopic mass of the m <i>hic mass units</i> , u .	the ing phly ost
* Note: Ma	ss number ≠ atomic mass. The te	extbook is too simplistic and so t	he notes above are what you should	study.
Exampl	e 1: Magnesium	has 3 naturally occurr	ing isotopes which are l	sted:
Isotope	Isotopic mass (u)	% Abundance		
Mg-24	23.985042	78.99		
Mg-25	24.985837	10.00		
Mg-26	25.982593	11.01		
			Mg	
			88	
	of 26		© Boardworks	Ltd 2009

A _r calculations	board works
Working out relative atomic mas	SS
Sulfur has two main isotopes in the following abune ${}^{32}S = 96\%$ and ${}^{34}S = 4\%$. What is the A_r of sulfur to	dances: 2dp?
[] [32.08
	32.16
	32.24
	32.32
44 of 26	© Boardworks Ltd 2009

Waves behaving like particles? Well hit me with a Planck!

A serious challenge to Rutherford's atomic model arose almost immediately.

By the end of the 1800s the physics available stated that accelerating charges should radiate (lose) energy.

board

Figura 2. Niels Bohr em 1933 com seu mentor, Ernest Rutherford. Os dois se encontraram no Congresso Solvay em Bruxelas. Foto gentilmente cedida

This meant that atoms should collapse in a fraction of a second as their electrons lost energy and spiralled around the nucleus.

Rutherford's model could not explain why the electrons didn't lose energy and spiral into the nucleus (much like any

What is ionization energy?

lonization is a process in which atoms lose or gain electrons and become ions.

(board

The first ionization (I_1) energy of an element is the energy required to *remove* one electron from a gaseous atom.

$$M_{(g)} \rightarrow M^+_{(g)}$$
 + $e^-_{(g)}$

The second ionization (I_2) energy involves the removal of a second electron:

 $M^{+}_{(g)} \rightarrow M^{2+}_{(g)} + e^{-}_{(g)}$

Looking at trends in ionization energies can reveal useful evidence for the arrangement of electrons in atoms and ions.

The sub-levels					board Work	15
There are four s	ub-levels,	sub-	evel	max no.	electrons	
increasing energy	oi v:snd	s	5		2	
and f. Each hold	sa	p)		6	
different number	of	С	I		10	
electrons.		f	:		14	J
Each principal energy level	principal er level, r	nergy I	sub)-levels	max no. electrons	
contains a	1		1s		2	
different	2		2s, 2	2p	8	
sub-levels.	3		3s, 3	3p, 3d	18	
	4		4s, 4	p, 4d, 4f	32	J
82 of 39				© 1	Boardworks Ltd 2009	2

Atomic	Orbitals				(board works)
 The n depen 	umbers a d on the	ind kinds energy s	of atomi ublevel.	c orbitals	5
Energy Level, n	# of sublevels	Letter of sublevels	# of orbitals per sublevel	# of electrons in each orbital	Total electrons in energy level
					C

Atomic	Orbitals				board
 The need dependence 	umbers a d on the	ind kinds energy s	of atomi ublevel.	c orbitals	
Energy Level, n	# of sublevels	Letter of sublevels	# of orbitals per sublevel	# of electrons in each orbital	Total electrons in energy level
1	1	S	1	2	2
2	2	s p	1 3	2 6	8
3	3	s p d	1 3 5	2 6 10	18
4 86 of 34 -	4	s p d f	1 3 5 7	2 6 10 14	32

Electron configuration &	Energy Level Diagrams
15 25 25 25 25 26 26 25 26 26 25 26 26 25 26 26 26 26 26 26 26 26 26 26	Electrons fill <i>lower energy</i> <i>sub-levels first.</i> *Although the 3d sub-level is in a lower principal energy level than the 4s sub-level, it is actually higher in energy.
n = 5	
Energy n = 2	All orbitals in the same energy level (same <i>n</i> value) have the same energy and are thus said to be <i>degenerate orbitals</i> .
	This is only true for the hydrogen atom.
93 of 39	Dyelectronic atoms, have <u>multiple electrons</u> which n other, causing differences in energies between the in a given energy level. (<i>more on this later</i>)

Examples: Elect	tron configuration of ions
1. Negative Ions (Anions):	Add appropriate # of electrons to last subshell, starting with the configuration of the neutral atom.
Examples: O ²⁻	N^{3-}
 Positive Ions (Cations): i) the <u>electr</u> ii) <u>after that</u>, 	Uh, oh there are some rules! ons in the outermost shell (largest <i>n</i> -value) are removed first. removal order is p before s before d (within the outermost shell)
Examples: Sn ²⁺	Fe ³⁺
103 of	© Boardworks Ltd 2009

Electronic confi	guration & Core Notation	board Works
After a noble and so too, a As we begin scandium in	gas, a new period begins in new energy level . period 3, let's represent the <i>Table 5.4.2</i> using <u>electron co</u>	the periodic table elements up to onfigurations only.
Element	Full Electron Configuration	Core Notation
sodium		
We can conde core notation noble gas is <i>re</i> <i>brackets</i> , then This inner core focus to be on electrons in the	ense electron configuration , in which the configuration of epresented by that noble gas outer electrons are indicated e contained full, closed shells the valence electrons above e open outer shell.	ns using of the previous s symbol in square d in bold type. s, allowing the ve the core

ectronic configuration & Core Notation				
Element	Full Electron Configuration	Core Notation		
sodium	?	?		
magnesium	?	?		
aluminum	?	?		
silicon	?	?		
phosphorus	?	?		
sulphur	?	?		
chlorine	?	?		
argon	?	?		
potassium	?	?		
calcium	?	?		
scandium	?	?		

Electron or	bitals			(board works)				
It is <i>impossible to exactly locate</i> the position of an electron within an energy sub-level. By measuring the electron density around the nucleus, it is possible to define regions where electrons are most likely to be found at any one time. These regions are called orbitals .								
Each energy sub-level has one or more orbitals , each of which can contain a maximum of two electrons .								
	sub-level	no. orbits	max no. electrons					
	S	1	2					
	р	3	6					
	d	5	10					
\bigcirc	f	7	14					

Electron configurat	ions for th	ne first 18	element	s:		
Element	Ζ	15	2s	2p	35	Зр
н	1		-		1	
He	2					
Li	3					
Be	4		_			
В	5		_			
С	6		-			
N	7					
0	8		3 <u></u> 3		<u></u>	
F	9		_			
Ne	10					
Na	11	_	_			
Mg	12	-				
Al	13					
Si	14		_			
Р	15	200 - 100 				
S	16		· _ · · ·			
Cl	17					
Ar	18					

Summary of Quantum Numbers								
Every electron can be uniquely described using four <i>quantum numbers</i> : <i>n</i> = principal quantum number – indicates the energy level. Bigger <i>n</i> -value means further from the nucleus. <i>I</i> = angular momentum quantum number – gives the shape of the orbital. <i>m</i> = magnetic quantum number – gives orientation of the orbital in space. <i>s</i> = spin quantum number – Tells you the orientation of the electron.								
Quantum number	Name	What it labels	Possible values	Notes				
n	principal	electron energy level or shell number	1, 2, 3,	Except for d-orbitals, the shell number matches the row of the periodic table.				
e	azimuthal	orbital type: s, p, d, f	0, 1, 2,, n-1	0 = s orbital 1 = p orbital 2 = d orbital 3 = f orbital				
m _é	magnetic	orbital sub-type	integers between and including -l and +l: -l, -l+1, l-1, l	$ \begin{split} \ell &= 0 \ (s): \ 2 \ e^- \ \text{in one orbital} \\ \ell &= 1 \ (p): \ 2 \ e^- \ \text{in each of three sub orbitals} \\ & (p_x, p_y, p_z) \\ \ell &= 2 \ (d): \ 2 \ e^- \ \text{in each of 5 sub orbitals} \\ & (d_{xy}, d_{xz}, d_{yz}, d_{x^2-y^2}, d_zz) \end{split}$				
ms	spin	electron spin	$\pm \frac{1}{2}$	Spins in any single sub-orbital must be paired.				
	- 120 of -			@ Boardworks Ltd 2009				

