CHEMISTRY 11

UNIT 4: THE MOLE

BOOK 1: INTRODUCTION TO THE MOLE

\qquad Block: \qquad

The Mole - The Central Unit of Chemistry units

What mass of oxygen has the same number of atoms as 1 g of hydrogen? An oxygen atom (16 u) weighs 16 times as much as a hydrogen atom (1 u). Therefore, it would require 16 g of oxygen to have the same number of atoms as 1 g of hydrogen. Chemists extended this reasoning to all the elements. For example, $55.8 \mathrm{~g} \mathrm{Fe}, 35.5 \mathrm{~g} \mathrm{Cl}, 23.0 \mathrm{~g} \mathrm{Na}$, and $12.9 \mathrm{~g} \mathrm{C}+6 \mathrm{MS}$. contain the same number-of since these masses are in the same ratios as their individual atomic masses. How many atoms are there in the atomic mass of any element expressed in grams? Originally chemists didn't know and even now

The mole is at the centre of the chemical measurement.
"How much is a mole?", you ask.... THE GREEN PEA ANALOGY

If you were to select one hundred $\left(10^{2}\right)$ average-size peas, you would find that they occupy roughly a volume of $20 \mathrm{~cm}^{3}$. One million peas $\left(10^{6}\right)$ are just enough to fill an ordinary household refrigerator and a billion $\left(10^{9}\right)$ peas will fill a three bedroom house from basement to attic. A trillion (10^{12}) peas will fill a thousand houses, the number you might find in a small town. A quadrillion $\left(10^{15}\right)$ peas will fill all of the buildings in a city the size of Victoria.

Obviously you will run out of buildings very soon. Let us try a larger measure. Say there is a blizzard over all the western provinces, except that instead of snowing snow, it snows peas. All of British Columbia, Alberta, and Saskatchewan lie covered to a depth of 1 metre. The blanket of peas drifts across roads, banks up against the sides of houses, and covers all the fields and forests. Think of flying across the province with this blanket of peas extending as far as you can see. This gives you an idea of our next number. In the entire blanket there are about a quintillion $\left(10^{18}\right)$ peas.

Imagine that this blizzard falls over the entire land surface of the planet! North America, South America, Africa, Europe, Asia, Australia and Antarctica are all buried one metre deep. This global blanket contains about one sextillion $\left(10^{21}\right)$ peas. Then imagine that the oceans are frozen over and the blanket now covers the entire land and sea area of the Earth to a one metre depth. Go out among the neighbouring stars and collect 250 planets the size of Earth and cover each of them with a blanket of peas one metre deep. Then you will have a mole of peas.

Furthermore, go out into the farthest reaches of the Milky Way and collect 250000 planets, each the size of the Earth, and cover them with a blanket of peas one metre deep. You now have about one octillion (10^{27}) peas - which is roughly the number of atoms which make up your body.

- 1 mole of sulphur atom is exactly 32.1 g
- 1 molecule of $\mathrm{H}_{2} \mathrm{O}$ contains 2 moles of hydrogen and 1 mole of oxygen....but it is also considered to be 1 mole of water.
When we say a mole refers to "the number of things", those "things" can be atoms, molecules, compounds, etc...

Introducing Molar Mass
Experimental work by the English chemist John Daltor (1766-1844) wis concerned with how much of one element could combine with a given amount of another element. He put forth the following hypotheses.

- Molecules are made up of " a 6 oms " of various elements.
- If compound B contains twice the mass of element X as does compound A , then compound B must contain twice as many atoms of X .

Dalton did not attempt to figure out the mass of an individual atom of any element. Instead he simply assigned an \qquad arbitrary mass to each element, assuming that hydrogen was the lightest element and therefore could be assigned a mass of "1".

Dalton's experiments found that Carbon was 6 times heavier than Hydrogen, so C was given the mass 6 (we know $c=12$)
Similarly, Oxygen was 16 times heavier than Hydrogen, and was assigned a mass of 16 .
In this way Dalton was able to calculate relative masS CS for several different

Figure 3.1.2 The mass of an oxygen atom is equal to the mass of 16 hydrogen atoms.

Molar Mass follows from simply restating the definition of a mole that the molar mass of an element is its atomic mass expressed in grams.
(g) For example, "one mole is the number of atoms in 16 g of oxygen" can be restated as "one mole of oxygen atoms weighs 16 q."
grams The at conic mass of the elements can be found in the Periodic Table. The atomic mass of oxygen is 16 M and thus the molar mass of oxygen is 16.0 g
\qquad molar mass'"
\qquad This is better expressed as a \qquad

 QI have 0

Figure 3.2.3 The mass of 1 mol of a chemical depends on the atoms that make it up.

1 mol of NaCl formula units consists of 1 mol of sodium atoms $(\mathbf{2 3 . 0} \mathrm{g})$ and 1 mol of chlorine atoms $(35.5 \mathrm{~g})$ for a total mass of 58.5 g motecularmas)

Just as the molar mass of an element is simply its atomic mass expressed in grams, the molar mass of a Compound is simply its molecular
or formula mas) expressed in grams.

(a)

(b)

Figure 3.2.4 (a) The molecular mass of water is the sum of the masses of the oxygen and hydrogen atoms. (b) The formula mass of NoCl is the sum of the masses of sodium and
 1 mol $=6.022 \times 1 \times 0^{33}$ of something

6.02×10^{23}

The MOLAR MASS is the mass of ONE MOLE of particles.
This definition leads to the following statement.

/IMPORTANT: Unless specifically asked to use more precise values, always use masses rounded off to one decimal place. The masses of the elements are given in the Periodic Table of one decimal place. The masses of the elements are given in the Periodic Table of
the Elements and the table Atomic Masses of the Elements at the back of this book.

NOTE: Molecular mass is the mass of a molecule: the sum of the atomic weights of each element multiplied by the number of atoms of that element in the molecular formula.
atomic mass = amu or a molar or molecular mass =a
PRACTICE - Determining a Compound's Molar Mass (g)

$$
2-35 n
$$

1. What is the molecular mass of nitrogen dioxide? $(1 \times N)+(2 \times 0)$

$$
(1 \times 14.0 u)+(2 \times 16.0 u)=46.0 \mathrm{~g}
$$

(g)
$(2 \times \mathrm{Na})+(2 \times \mathrm{Cr})+(7 \times 0)$

$$
(2 \times 23.0 \mathrm{u})+(2 \times 52.0 \mathrm{u})+(7 \times 16.0 \mathrm{u})=262.0 \mathrm{~g}
$$

(g)
$(2 \times \mathrm{Fe})+(3 \times 5)$
3. What is the molecular mass of iron(III) sulphide?

$$
(2 \times 55.8 u)+(3 \times 32.1 u)=207.9 \mathrm{~g}
$$

${ }_{\mathrm{Fe}}^{2} \mathrm{~S} 3$

Mole Problems \# O - Answer Key
1.a) $\mathrm{Fe}_{2} \mathrm{O}_{3}$

$$
\left.\begin{array}{l}
2 \times \mathrm{FC}=2 \mathrm{~mol} \times 55.8 \mathrm{~g} / \mathrm{mol}=111.6 \mathrm{~g} \\
3 \times O=3 \mathrm{~mol} \times 16.0 \mathrm{~g} / \mathrm{mol}=48.0 \mathrm{~g}
\end{array}\right\} A D D=159.6 \mathrm{~g}
$$

b) $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\left.\begin{array}{l}
3 \times H=3 \mathrm{~mol} \times 1.0 \mathrm{~g} / \mathrm{mol}=3.0 \mathrm{~g} \\
1 \times P=1 \mathrm{~mol} \times 31.09 / \mathrm{mol}=31.0 \mathrm{~g} \\
4 \times 0=4 \mathrm{~mol} \times 16.0 \mathrm{~g} / \mathrm{mol}=64.0 \mathrm{~g}
\end{array}\right\} A D D=98.0 \mathrm{~g}
$$

c) $\mathrm{Be}_{5} \mathrm{As}_{2}$

$$
\left.\begin{array}{l}
5 \times B e=5 \mathrm{~mol} \times 9.0 \mathrm{~g} / \mathrm{mol}=45.0 \mathrm{~g} \\
2 \times A s=2 \mathrm{~mol} \times 74.9 \mathrm{~g} / \mathrm{mol}=149.8 \mathrm{~g}
\end{array}\right\} A D D=194.8 \mathrm{~g}
$$

d) $\mathrm{Rb}_{2} \mathrm{SO}_{3}=$ Rubidium sulfite

$$
\left.\begin{array}{l}
2 \times R b=2 \mathrm{~mol} \times 85.5 \mathrm{~g} / \mathrm{mol}=171.0 \mathrm{~g} \\
1 \times \mathrm{S}=1 \mathrm{~mol} \times 32.1 \mathrm{~g} / \mathrm{mol}=32.1 \mathrm{~g} \\
3 \times 0=3 \mathrm{~mol} \times 16.0 \mathrm{~g} / \mathrm{mol}=48.0 \mathrm{~g}
\end{array}\right\} A D D=251.1 \mathrm{~g}
$$

e) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=$ Aluminum sulfate

$$
\left.\begin{array}{l}
2 \times A l=2 \mathrm{~mol} \times 27.0 \mathrm{~g} / \mathrm{mol}=54.0 \mathrm{~g} \\
3 \times S=3 \mathrm{~mol} \times 32.1 \mathrm{gol}=96.3 \mathrm{~g} \\
12 \times 0=12 \mathrm{~mol} \times 16.0 \mathrm{~g} / \mathrm{mol}=192.0 \mathrm{~g}
\end{array}\right\} \text { ADD }=342.3 \mathrm{~g}
$$

f) $\mathrm{Mg}(\mathrm{OH})_{2}$: Magnesium hydroxide

$$
\left.\begin{array}{l}
1 \times \mathrm{Mg}=1 \mathrm{~mol} \times 24.3 \mathrm{~g} / \mathrm{mol}=24.3 \mathrm{~g} \\
2 \times 0=2 \mathrm{~mol} \times 16.0 \mathrm{~g} / \mathrm{mol}=32.0 \mathrm{~g} \\
2 \times H=2 \mathrm{~mol} \times 1.0 \mathrm{~g} / \mathrm{mol}=2.0 \mathrm{~g}
\end{array}\right\} A D D=58.3 \mathrm{~g}
$$

2. a) | $2.50 \mathrm{~mol} \mathrm{~K} \mathrm{KrO}_{4}$ | $194.2 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}$ |
| :--- | :--- |
| $1 \mathrm{~mol} \mathrm{~K} \mathrm{CrO}_{4}$ | |$=485.5 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{CrO}_{4}$

$$
=486 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{CrO}_{4} \text { (SIGFIGS) }
$$

b)

$$
\begin{aligned}
0.25 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} & \frac{261.3 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}
\end{aligned}=65.3 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} .
$$

c) | $0.375 \mathrm{~mol} \mathrm{Na} \mathrm{Nr}_{2} \mathrm{O}_{7}$ | $262 \mathrm{~g} \mathrm{Na} 2 \mathrm{Cr}_{2} \mathrm{O}_{7}$ |
| :--- | :--- |
| 1 mol Na | |$\quad \begin{aligned} & 98.3 \mathrm{Cr}_{2} \mathrm{O}_{7}\end{aligned} \begin{aligned} & 98 \mathrm{ga}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\end{aligned}$

d)	0.25 mol NaCH COO	$82 \mathrm{NaCH}_{3} \mathrm{COO}$
$1 \mathrm{~mol} \mathrm{NaCH3} \mathrm{COO}$		$=\begin{array}{ll}21 \mathrm{~g} \mathrm{NaCH3} \mathrm{COO}\end{array}$

e)	$0.418 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$	$241.8 \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
$1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$		$=\begin{aligned} & 101 \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\end{aligned}$

f) | $1.872 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ |
| :--- |
| $181.5 \mathrm{~g} \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ |
| $1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ |$=\begin{aligned} & 339.8 \mathrm{~g} \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\end{aligned}$

3.a) $50.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left|\frac{1 \mathrm{~mol}_{6} \mathrm{CH}_{12} \mathrm{O}_{6}}{}\right| 180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad=$| $0.278 \mathrm{~mol} \mathrm{C}_{0} \mathrm{H}_{12} \mathrm{O}_{6}$ |
| :--- |

b) $25.00 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{3} \mathrm{PO}_{4} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}}{2.2 .3 \mathrm{~g} \mathrm{~K}_{3} \mathrm{PO}_{4}}=$| 0.1178 mol K |
| :--- |\right.

c) $\frac{15.57 \mathrm{~g} \mathrm{Bi}(\mathrm{OH})^{3} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{Bi}(\mathrm{OH})_{3}}{260.0 \mathrm{~g} \mathrm{Bi}(\mathrm{OH})_{3}}=0.05988 \mathrm{~mol} \mathrm{Bi}(\mathrm{OH})_{3}\right.}{}$

d) $3.50 \mathrm{~g} \mathrm{AsCl} 3 \left\lvert\,$| $1 \mathrm{~mol}_{3} \mathrm{AsCl}_{3}$ | |
| :--- | :--- |
| | $181.4 \mathrm{~g} \mathrm{AsCl}_{3}$ |$=\begin{aligned} & 0.0193 \mathrm{~mol} \mathrm{AsCl}\end{aligned}\right.$

e) $27.85 \mathrm{~g} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \left\lvert\, 1 \mathrm{~mol} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \begin{aligned} & 357.4 \mathrm{~g} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}\end{aligned}=\begin{aligned} & 0.07792 \mathrm{~mol} \mathrm{Fe}_{3}(\mathrm{PO} 4)_{2}\end{aligned}\right.$

f) $4.90 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \mid 1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3},$| 0.0209 mol Al |
| :--- |
| $234 \mathrm{~g}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{CO}_{3}\right)_{3}$ |

\# of mol \longleftrightarrow volume of a gas
Part B: Molar Volume

Figure 3.4.1 Gay-Lussac was an avid hot-air balloonist and conducted some of his experiments aloft.

Just as the mass of a mole of a substance is called its molar mass, the volume of a mole of a substance is called its \qquad molar volume
\qquad
The molar volume of a substance is the space occupied by 1 mole of it's particles. A solid's or a liquid 's molar volume is determined by the size and spacing of its particles. The size of the particles has little effect on a gas's molar volume because the average distance between the particles is so much greater than their size. QK.E.
At a \qquad higher temperature, a substance's particles are moving faster and are thereby hitting each other harder and bouncing farther apart. Since its particles have spread farther apart, a substance's molar volume is \qquad at higher temperatures.
Liquids and gases are more frequently measured by volume than by mass. A substance's molar volume allows you to convert the volume of the substance into its \qquad

Avogadro's Hypothesis: Equal volumes of different gases, at the same temperature and pressure, contain the same number of particles. $=6.02 \times 10^{23}$

$$
\begin{aligned}
& \text { STANDARD TEMPERATURE AND PRESSURE }(\underline{S T P})=0^{\circ} \mathrm{C} \text { and } 101.3 \mathrm{kPa} . \\
& \text { gas samples with the same pressure, temperaturg and number of particles occupy identical volumes. } \\
& \text { implies eq Nae number of of every gas at STP occupy identical volumes. }
\end{aligned}
$$

Experimentally_determined fact:
1 mol of ANY GAS at STP has a volume of 22.4 L .
Volume of Gas (STR)

$$
\begin{array}{r|c|}
\hline \text { given mol } \rightarrow 2.4 \mathrm{Lolume} \\
0.350 \mathrm{~mol} & 22.4 \\
\hline 1 \mathrm{~mol}
\end{array}=7.84 \mathrm{~L} \text { of } \mathrm{SO}_{2}(\mathrm{~g})
$$

mass
NOTE: These conversion factors ONLY apply to gases and only at STP.
EXAMPLE: What is the volume occupied by 0.350 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ at STP?

EXAMPLE: How many moles of gas are contained in a balloon with a volume of 10.0 L at STP?

PRACTICE -Converting Moles to Number of Items

1. Chromium ions are responsible for the beautiful colours of rubies and emeralds.

How many chromium ions $\left(\mathrm{Cr}^{3+}\right)$ are in 3.5 mol of chromium ions?
2. $\quad 30.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=$ \qquad molecules $\mathrm{H}_{2} \mathrm{O}$

1. 2.1×10^{24} ions Cr^{3+}
2. 1.81×10^{25} molecules $\mathrm{H}_{2} \mathrm{O}$
3. How many atoms of sodium are in 0.023 mol Na ?
4. 1.4×10^{22} atoms Na

PRACTICE Converting Number of Items to Moles

4. Incandescent lights are filled with argon to prevent the glowing filament from burning up.

How many moles of argon do 1.81×10^{22} atoms of argon represent?
5. 2.25×10^{24} molecules $\mathrm{CO}_{2}=$ \qquad mol CO ?
6. A 1-L intravenous bag of saline solution contains 9.27×10^{22} formula units of NaCl . How many moles of NaCl is this?

COMBINED EXERCISES:

15. Calculate the number of moles contained in the following.
(a) 10.6 L of $\mathrm{SO}_{2}(\mathrm{~g})$ at STP
(e) 0.950 kg of NaOH
(b) 7.50×10^{21} molecules of HNO_{3}
(f) 25.0 mL of $\mathrm{N}_{2}(\mathrm{~g})$ at STP
(c) 425 mg of $\mathrm{Ca}(\mathrm{OH})_{2}$
(g) 5.50×10^{25} molecules of CCl_{4}
(d) 4.25×10^{12} molecules of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(h) 0.120 L of $\mathrm{NO}_{2}(\mathrm{~g})$ at STP
16. Calculate the volume of the following gases at STP.
(a) 0.235 mol of $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})$
(b) $9.36 \mathrm{~mol}^{\text {of } \mathrm{SiH}_{4}(\mathrm{~g})}$
(c) $2.55 \times 10^{3} \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
17. Calculate the mass of each of the following.
(a) 0.125 mol of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP
(c) $6.54 \times 10^{-4} \mathrm{~mol}$ of $\mathrm{HCN}(\mathrm{g})$ at STP
(b) 5.48 mol of $\mathrm{FeCl}_{3}(\mathrm{~s})$
(d) 15.4 mol of $\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s}$
18. Calculate the mass of 1 mol of each of the following.
(a) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(b) Grandma Smith, an average grandmother, having a mass of 52 kg . (Express your answer in kilograms.)
(c) a bismuth atom with a mass of $3.52 \times 10^{-22} \mathrm{~g}$
(d) an electron having a mass of $9.1 \times 10^{-28} \mathrm{~g}$.
(e) $\mathrm{Cu}_{3}(\mathrm{OH})_{2}\left(\mathrm{CO}_{3}\right)_{2}$
(f) a book having a mass of 1.34 kg

Complete Lab Activity 4B: Copper \& Iron Nail

MULTIPLE CONVERSIONS BETWEEN MOLES, MASS, VOLUME AND NUMBER OF PARTICLES

Before jumping into the middle of @om complex conversion factor calculations, a simple process must be understood: how to find the number of aten in a give number
This calculation simply involves counting the number of atoms in one molecule and then multiplying by the of mole colin number of molecules involved.

EXAMPLE: How many atoms are there in 5 molecules of CuSS $_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?

EXAMPLE: How many HYOROGEN atoms are there in 30 molecules of $\mathrm{H}_{3} \mathrm{PO}_{4}$?

$$
\begin{aligned}
& { }^{2} \text { Imstecule }=3 \text { atoms } \\
& \begin{array}{l|l}
30 \text { molealles } & 3 \text { atoms } \\
& 1 \text { molecule }
\end{array} \\
& =90 \text { Hatams } \\
& \text { *"oxygen atom" }=\mathrm{O}<\text { latex } \\
& \text { "oxygen gas" }=\mathrm{O}_{2} \leftarrow 2 \text { tans } \\
& \text { Part D: Two-Step Mole Conversions }
\end{aligned}
$$

\qquad atoms and observable
The mole serves as a link between the invisible world of
\qquad of chemicals. The mole is the central unit of chemistry and allows us to keep track of atoms and molecules.

The mole is "central" to all conversions between mass, particles and volume: each calculation goes form STARTING UNIT $-\boldsymbol{-}$ MOLES $-\gg$ FINAL UNIT (give nvalue

EXAMPLE: What is the volume occupied by 50.0 g of $\mathrm{NH}_{3}(\mathrm{~g})$ at STP? given mass (mole, volume $\xrightarrow{\text { mass }} \rightarrow 1$ mol $=22.4 \mathrm{~L}$

EXAMPLE: What is the mass of 1.00×10^{12} atoms of Cl ?
given atoms $\longrightarrow \mathrm{Mol} \longrightarrow$ mass

EXAMPLE: How many oxygen atoms are contained in 75.0 L of $\mathrm{SO}_{3}(\mathrm{~g})$ at STP?
given
volume MOL \longrightarrow molecules of $\mathrm{SO}_{3} \longrightarrow$ atoms of 0

75.0 L	1 mol	6.02×10^{23} moles. SO_{3}	30 atoms
	22.4 K	1 mol	1 molecule of SO_{3}

chemistry homework
Assignment \#6- Practice Problems \#1-3 \& Hebden Questions \#21-24 (odd letters) page 85-87
Complete ALL assignments on a separate piece of paper and attach to your booklet when handing in at the end of the unit.

PRACTICE - Two-Step Conversions

1. Fill in the missing entries to determine the mass in grams of a billion billion $\left(1 \times 10^{18}\right)$ sulphur dioxide molecules.

2. How many atoms are in 2.1 g Br ? ANSWERS:
3. $1 \times 10^{-4} \mathrm{~g} \mathrm{SO}_{2}$
4. 1.6×10^{22} atoms Br
5. $1.79 \times 10^{-22} \mathrm{~g} \mathrm{Ag}$
6. What is the mass in grams of one atom of Ag?

Part E: Molar Volume and Density
Density is the amount of \qquad mater in a given volume of an object or material. In other words, it is the mass per unit volume. Density is a \qquad that relates a substance's lass directly to its \qquad volume without any reference to the mole. In terms of our wheel model, density is the section of the rim that connects MASS and VOLUME.

So far, the volumes used all refer to a gaseous substance at STP. If Density is mentioned at any point in a question, you should immediately real that:

Sample Problem - Calculating Molar Volume from Density
In an episode of the television show "MythBusters," the team floated an aluminum foil boat on the invisible gas, sulphur herafluoride, SF_{6} SF SF_{6} has a density of 6.00 qu l at room temperature and pressure, about six times that of air.
What is the molar volume of SF_{6} under these conditions?

- If the volume of a solid or liquid is the unknown, calculate the volume from $V=m / d$. If the mass is not known, find the mass from the moles of the substance present. If the molar volume is the unknown, the molar mass is used in the calculation. (Note that you cannot use the molar volume of a gas, 22.4 when calculating the volume of a liquid or solid.)
- If the density is unknown, you will need both mass and volume to calculate: $d=m / v$. The mass can be found if the number of moles is known. If neither the mass nor volume is given, the density of a gas at STP can be found by using the mass of 1 mol and the volume of 1 mol at STP.
If the number of moles is unknown, use the density and volume to calculate $m=d \cdot V$ and then convert the mass to moles.
- If the molar mass of a gas at STP is unknown, the data given is usually the mass and volume of a small amount of gas. In this case, find the density of the gas using the given mass and volume and then combine the density with the volume of $1 \mathrm{~mol}(22,4 \mathrm{~L})$ to find the mass of 1 mol .

mL solve for volume in m_{m}) liquid (
EXAMPLE: What is the volume occupied by 3.00 mol of ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{D})$? ($\mathrm{d}=0.790 \mathrm{~g} / \mathrm{mL}$)

$$
\begin{aligned}
& \text { ears canst use } \\
& 1 \mathrm{~mol}=22.4 \mathrm{~L}
\end{aligned}
$$

$$
M . V .=\frac{m \cdot m}{D \quad}
$$

EXAMPLE: What is the density of $\mathrm{O}_{2}(\mathrm{~g})$ at STP?

$$
\begin{aligned}
& =175 \mathrm{~mL} \\
& \left(1.75 \times 10^{2} \mathrm{~mL}\right) \\
& (16.0 \mathrm{~g})=32.0 \mathrm{~g}
\end{aligned}
$$ volume \rightarrow mass , liquid (notagas e sT)

EXAMPLE: A 2.50 L bulb contains 4.91 g of a gas at STP. What is the molar mass of the gas?

call. molar.
mass.

$$
2 \cdot(A i)=2(27.05)
$$

$$
3 \cdot(0)=\frac{3(16.0 \mathrm{~g})}{102.0 \mathrm{~g}}
$$

$$
\begin{aligned}
& \text { EXAMPLE: } \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \text { has a density of } 3.97 \mathrm{~g} / \mathrm{mL} \text {. How many atoms of } \mathrm{Al} \text { are in } 100 \mathrm{~mL} \text { of } \mathrm{Al}_{2} \mathrm{O}_{3} \text { ? } \\
& \text { density }=\frac{m}{V}=\frac{4.91 \mathrm{~g}}{2.50 \mathrm{~L}} \quad \mathrm{~mol}=\mathrm{molar}^{22.4 \mathrm{~L} \text { vol. }} \quad \mathrm{D}=\frac{\mathrm{m} \cdot \mathrm{~m}}{\mathrm{~m} \cdot \mathrm{~V}} \therefore \mathrm{~mm}=\left(\mathrm{D}^{2}\right)\left(\mathrm{m}^{\prime} \cdot \mathrm{V}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXAMPLE: How many moles of } \mathrm{Hg}(\mathrm{I}) \text { are contained in } 000 \mathrm{~mL} \text { of } \mathrm{Hg}(\mathrm{I}) \text { ? (} \mathrm{d}=13.6 \mathrm{~g} / \mathrm{mL} \text {) }
\end{aligned}
$$

chemistry homework Questions \#25-34 (all) page 88 + The Mole Review Complete ALL assignments on a separate piece of paper and attach to your booklet when handing in at the end of the unit.

1. Gold has a density of $19.42 \mathrm{~g} / \mathrm{mm}^{3}$. The standard gold bar held as gold reserves by central banks weighs 12.4 kg . What is the volume of the standard gold bar?

$$
D=\frac{m \cdot m}{m \cdot V} \therefore m V=\frac{m m}{D}=\frac{12.4 \times 10^{3} \mathrm{~g}}{19.42 \frac{\mathrm{~g}}{\mathrm{~mL}}} \quad \begin{array}{ll|l|}
12.4 \mathrm{~kg} & 10^{3} \mathrm{~g} \\
1 \mathrm{~kg} & 1 \mathrm{~kg} \\
\hline 12.4 \times 10^{3} \mathrm{~g} \\
\hline
\end{array}
$$

2. Mercury has a density of $13.534 \mathrm{~g} /$ org at room temperature. What is the mass of 12.7 mL) of mercury?
$D=\frac{m \cdot m}{m v} \therefore m m=$ Density \quad molar volume
3. Although ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is best known as the type of alcohol found in alcoholic beverages, its largest use is as a fuel or fuel additive. The density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$. What is the molar volume of ethanol?

$$
\begin{aligned}
& D=\frac{\text { molar mass }}{\text { molar volume }} \\
& \therefore m \cdot v=\frac{m \cdot m}{D}
\end{aligned} \quad \begin{aligned}
& \text { molar mass }=2(12.0)+6(1.0)+(16.0 \mathrm{~s})=46.0 \mathrm{~g} \text { volume }=\frac{46 \mathrm{O}_{\mathrm{g}}}{0.78 \frac{\mathrm{~g}}{\mathrm{~mL}}}=58.3 \mathrm{~mL} \\
& \hline \text { mar }
\end{aligned}
$$

${ }^{\text {wh }}$ E

\section*{| $\mathrm{M} \circ$ | L | E |
| :--- | :--- | :--- |
| E | | |}

KEY

 w

1. a) $6.57 \mathrm{~L} \mathrm{H}_{2} \mathrm{~S}$ b) $2.69 \times 10^{-3} \mathrm{~L}$ c) 0.019 L BrF d) $3.2 \times 10^{3} \mathrm{~L} \mathrm{~B}_{2} \mathrm{H}_{6}$
2. a) $3.271 \times 10^{-22} \mathrm{~g}$ Au b) $3.6 \times 10^{-7} \mathrm{~g} \mathrm{AgCl}$ c) $0.469 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}$ d) $13.0 \mathrm{~g} \mathrm{SF}{ }_{6}$
3. a) $0.0391 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{8}$ b) $2.47 \times 10^{-3} \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}$ c) 0.268 mol NO 33 d) $4.46 \times 10^{-5} \mathrm{~mol} \mathrm{O}_{3}$
e) $7.56 \times 10^{-12} \mathrm{~mol} \mathrm{Pt}$ f) $1.000 \times 10^{-7} \mathrm{~mol} \mathrm{PCl}_{5}$
4. a) $7.53 \times 10^{6} \mathrm{~g} / \mathrm{mol}$ b) $\left.413 \mathrm{~g} / \mathrm{mol} \mathrm{c)} 178 \mathrm{~g} / \mathrm{mol} \mathrm{d}\right) 248.2 \mathrm{~g} / \mathrm{mol}$ e) $93.0 \mathrm{~g} / \mathrm{mol}$ f) $329.6 \mathrm{~g} / \mathrm{mol}$
5. a) $1.52 \times 10^{-3} \mathrm{~g} / \mathrm{mL}$ b) $0.01020 \mathrm{~L} / \mathrm{mol}$ c) $0.0207 \mathrm{~mol} \mathrm{CS}_{2}$ d) $0.704 \mathrm{~g} / \mathrm{mL}$ e) 0.899 mL Ag f) $2.28 \mathrm{~g} / \mathrm{mL} \mathrm{g}) 129 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ h) $34.0 \mathrm{~g} / \mathrm{mol}$ i) $0.418 \mathrm{~mL} \mathrm{NaCl} \mathrm{j)} 62.2 \mathrm{~g} / \mathrm{mol}$ k) $0.013 \mathrm{~L} / \mathrm{mol}$
6. a) 18 atoms b) $5.39 \times 10^{7} \mathrm{~L} \mathrm{COF}_{2}$ c) 4.38×10^{23} molecules d) $1.12 \times 10^{-3} \mathrm{~mol} \mathrm{HCN}$ e) $10.5 \mathrm{~L} \mathrm{ClF}_{3}$ f) 0.457 mol Fe g) 3.36×10^{21} molecules NOCl h) 9.755 g Pt i) $136.5 \mathrm{~g} / \mathrm{mol}$ j) $2.32 \times 10^{-3} \mathrm{~g} / \mathrm{mL}$ k) 0.0935 g Kr I) $\left.\left.8.573 \times 10^{-3} \mathrm{~L} / \mathrm{mol} \mathrm{m}\right) 63.9 \mathrm{~g} / \mathrm{mol} \mathrm{n}\right) 1.05 \mathrm{~g} / \mathrm{mL}$
o) $6.99 \times 10^{-4} \mathrm{~mol}$ CuSCN p) 3.73 mL q) $5.49 \times 10^{-4} \mathrm{~g} / \mathrm{mol}$ r) $51.9 \mathrm{~g} / \mathrm{mol}$ s) 1.74 mol HgS
