CHEMISTRY 11

UNIT 2: MATTER \&̇ INOROANIC NAMINO

BOOK 2: INORSANIC NAMINS

Block: \qquad

Test yourself....ionic \& covalent

This unit deals with the naming of compounds made from metals and non-metals.

- METALS
- NON-METALS
- METALLOID
q TRANSITION METALS
The compounds used in the examples and exercises which follow are selected from the metals in white boxes (below) and the nonmetals in shaded boxes. The elements in outlined boxes are not used in any of the examples or exercises which follow (although you should know the names and symbols for later purposes).

You should become VERY familiar with the following ion charges, as they are the most common...and you will use them often

Key Terms:

MEMORYAID: Cats are PAWsitive
A MONATOMIC species is made up of only one atom.
Example: $\mathrm{Ne}, \mathrm{He}, \mathrm{Li}^{+}, \mathrm{Cl}^{-}$A DIATOMIC species is made up of \mathcal{Q} atoms (which may be the same or different types). Example: $\mathrm{O}_{2}, \mathrm{IBr}, \mathrm{NO}, \mathrm{Br}_{2}, \mathrm{ClO}^{-}, \mathrm{Hg}_{2}^{2+}$ mercury. A Triatomic species is made up of three atoms. Example: $\mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{NOCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{3}^{-}$
A Polycutomispecies is made up of many atoms ("poly" means "more than ONE").
Note: This is a general term and applies to any species having more than one atom.

PRACTICE

1. In the space after each of the following species, indicate which of the terms below apply to each species. There is more than one term which applies to each species.

Part A Ionic Compounds: Naming Monatomoic Metal \& Non-Metal Ions

Naming monatomic metal ions: Use the name of the metal and add the word "'ion" Example: Sodium metal (Na) forms the $\mathrm{Na}^{+}=$Sodium ion
Aluminum metal (Al) forms the $-\mathrm{Al} 1^{+5}=A /$ cumin iv in ion .
The Stock System of nagging metal ions: If a metal ion has more than one possible charge the charge is indicated by a Roman Numeral, immediately following the name.

Example: $\mathrm{Fe}^{3+}=$ iron(III) ice $\mathrm{Fe}^{2+}=$ iron(II) ice $\mathrm{U}^{6+}=$ uranium (VI) icon $\mathrm{u}^{3+}=$ uranium (III) ion
Multivalent Ions: most transition metals are multivalent, meaning they have more than 1 stable state.

PRACTICE

 (Complete the following questions in the space provided below)2. Write the names of the following ions using the Stock system of notation.
(a) Cu^{+}
(b) Cr^{3+}
(c) w^{6+}
3. Write the formula of the following ions to show their charges.
(a) cobalt(III) ion
(b) nickel(II) ion
(c) vanadium (V) ion

Naming monatomic non-metal ions: Take off the original ending of the element's name and put on an \qquad
(The ending ide means the ion has a negative charge and has no attached atoms such as oxygen included with tine ion.)

Names and Formulae of Inorganic Compounds

|PRACTICE

Challenge (how much do you remember?)
ANSWERS
${ }^{2 A}$

> * dort forget brackets
> for polyatomic ions.

Recall that non-metals form molecular compounds with other non-metals
Binary Ionic but they form_iOnic_compounds with metals. The names and formulas of Compounds these two types of compounds are handled differently.
A binary compound contains the atoms of only two elements, and binary ionic compounds contain only two types of monatomic ions (charged individual atoms).

The name of any ionic compound is ... name
eg. NaCl metal (1)

+ sodium chlorich "
For example, a compound containing sodium ions and chloride ions is called sodium chloride.
The \qquad The ratio of \qquad charge of thermal and non-metal react can found in the table of common ions in your DATA BOOKLET.

Positively charged ions are called \qquad cations (think of the letter 't" as a sign)

The different types of electrical charge are called opposite charges because they have opposing effects.

When particles with \qquad charges bond together, the charges cancel to yield a product with a net charge of zero.
\qquad anions
Note that the sign of the ion charge (+ or -) is written after the numeral. For example, the aluminum ion is denoted as $A \beta^{3+}$ rather than as $A l^{+3}$.
\qquad \varnothing

Sodium Chloride

Magnesidun Hydroxide

Ions always associate together in a ratio that results in their charges cancelling to form neutral compounds

The formula $A l_{2} S_{3}$ means that there are $2 A l^{3+}$ ions for every $3 S^{2-}$ ions.
Chemists know the charges but \qquad DONOT show
charges
The formula of an ionic compound shows that the compound as a whole is \qquad neutral even though it contains both positively and negatively charged ions.

Look at the formula of aluminum sulphide shown below on the left. The number of aluminum ions equals the numerical value of the sulphide ion's charge and vice versa.

This simple shortcut for \qquad determining the formula

This method matches up the opposite charges so that they cancel and will always work if you reduce the formula to its

EXAMPLES:

Construcitng an IONIC COMPOUND from the NAME of the compound

Definition: An IONIC COMPOUND is a compound made up of ions.
IMPORTANT: Compounds are NEUTRAL MOLECULES. Therefore
(the sum of the " + " ion charges in the molecule) $=$ (the sum of the " - " ion charges in the molecule)
The translation of a chemical name into a chemical formula is a simple process with three rules.

1. Write the formula for the positive ion first and write the formula for the negative ion second. (In a chemical name, the POSITIVE ion is always written FIRST and the NEGATIVE ion is always SECOND. All you do is translate the words in the chemical name into ions in the order they are given.)

For example: Tin(IV) oxide is translated as

2. "Criss-cross" the numbers in front of the charges on the ions.

For example:

3. Tidy up the formula in a three-part process.

- If both subscripts can be evenly divided by " 2 " (or " 3 ", pccasionally), dp so.
- Omit the superscripted charges.
- Omit any subscript which is a " 1 ".

For example:

EXAMPLES:
a) sodium chloride :
b) potassium oxide:

c) calcium phosphide : $C a^{2^{+}} P^{3^{-}}$

d) $\operatorname{tin}(\mathrm{IV})$ sulphate : $\operatorname{tin}(\mathrm{IV})$ ion $=\mathrm{Sn}^{4^{+}}$sulphate ion $=\left(\mathrm{SO}_{4}^{2-}\right)$

$$
\mathrm{Sn}_{2}\left(\mathrm{SO}_{4}\right)_{4} \xrightarrow[-2]{\text { sulphate ion }=\left(\mathrm{SO}_{4}^{2-}\right)} \text { simplify } \mathrm{Sn}\left(\mathrm{SO}_{4}\right)_{2}
$$

1. Write the formula of each of the following binary ionic con
(a) lithium sulphide
(c) aluminum ct
(b) chromium (III) oxide
(d) lead (II) sulph
2. Name each of the following binary ionic compounds:
(a) ZnO

	ANSWERS:

(b) PbCl_{4}
(c) CuCl_{2}
\qquad

1. a. $\mathrm{Li}_{2} \mathrm{~S}$
b. GrO
c. AlCl_{3}
2. a. zinc oxide
b. lead(IV) chloride
c. copper(II) chloride
d. sodium iodide
e. potassium sulphide
f. chromium(II) oxide
\qquad
\qquad

molecule
 \qquad
 \qquad

 is a neutral group of covalently bondedRecall that a atoms.

A polyatomic ion is a $C+19 R(T E)$ group of covalently bonded atoms so it's like a molecule except that it has a charon- +1-1-
They are relatively stable species that often remain intact in chemical reactions.
Many polyatomic ions are $0 \times 1 / \mathrm{CNiCNS}$, consisting of an atom of a given element and some number of _OXYG atoms.
Typically the element forms polyatomic ions with different numbers of oxygen atoms. The prefix " "bi -"before the name of a polyatomic ion adds an_t_lt. $\begin{array}{ll}\text { For example: } 2- & +1\end{array}$

$$
\mathrm{HSO}_{4}^{-}\left(\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}\right)
$$

Because they are charged, polyatomic ions associate with oppositely charged ions to form
Polyatomic ions are in bracket in in in formulas. (if multiple)
for example, the formula of calcium nitrate is $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

This means that the atoms within the brackets are bonded \qquad to each other and as a group they are bonded \qquad icnisấ垁年 to the atom or atoms outside the brackets.

formula ratio applies to

The brackets are necessary to show that the \qquad the entire polyatomic ion, not just to its last atom. For example, the formula of calcium hydroxide is $\mathrm{Ca}\langle\mathrm{OH})_{2}$ meaning that there are hydroxide $\left(\mathrm{OH}^{-}\right)$ions for each calcium ion.

Al s $\mathrm{HCO}_{3}-$
 Sum $=0 \times(-1)=-3$

By convention, chemists omit the brackets if no subscript is required.

For example, $\mathrm{Na}(\mathrm{OH})$ is written as just NaOH .

Writing Compound Names

Naming a Binary Ionic Compound

(two elements with no transition metals)

Naming a Compound with a Transition Metal

Element or Polyatomic Ion?

Elements are found on the periodic table.

Elements look like this: H K O O. Cu Ag

Polyatomic ions are groups of two or more elements.
$\mathrm{ClO}_{3} \mathrm{NH}_{4}$ OH

They stick together.

Naming a Compound with a Polyatomic Ion

calcium chlorate

Writing Compound Names

silicon tetrafluoride

Part C Naming Hydrates:
When many salts crystallize out of aqueous solution they "traporporate water molecules in a fixed $\left.\begin{array}{c}\text { every } \\ \text { time }\end{array}\right]$ ratio and pattern into their ionic crystal lattice.
These salts are called \qquad Hydrates . Many salts are supplied as hydrates. and are destined for aqueous solutions (dissolved in water) anyway.
$1 /$ Water is an integral part of hydrates and thus must be accounted for in both their names and their formulas.
*The same prefixes sued for naming coucitent compound go before the term

- hydrate to denote the number of water 1 in the formula. This tells you the Ratio of water moleculesto ions. "s molecules
\qquad
When a crystal of an ionic compound is grown by evaporation from aqueous solution, frequently it is found that the crytalesine structure will include water molecules.
 $\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{H}$, hydrate ratio
This formula shows that 5 water molecules are included with (or attached to) every CuSO_{4}. In other words, $\mathrm{CuSO}_{4}{ }^{*} 5 \mathrm{H}_{2} \mathrm{O}$ can be thought of as " $\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$ ".

The naming:
is straightforward and relies on using a prefix to tell how many water molecules are attached. Memorize the following prefixes and the numbers they represent.

EXAMPLE: $\mathrm{CuSO}_{4}(5)_{2} \mathrm{O}=\operatorname{copper}($ II $)$ sulphate pentahydrate
 $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}-4+\mathrm{t} 0=$ calcium nitrate eterahydrate
ionic salt.
$\mathrm{Ca}\left(\mathrm{HaCl}_{3}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$
PRACTICE Determining the Nam

1. Write the formula of each of the following hydrates:
(a) barium chloride dihydrate
(b) sodium carbonate monohydrate
(c) iron(III) nitrate nonahydrate
(d) barium hydroxide octahydrate
2. Name each of the following hydrates:
(a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ \qquad
b) $\mathrm{FeCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ \qquad
(c) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ \qquad
(d) $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ \qquad
3.

a. cobalt chloride hexahydrate b. iron(III) chloride tetrahydrate
c. sodium dichromate dihydrate d. magnesium sulphate heptahydrate
chemistry homework
Assignment \#10- Hebden pg 73 Questions \#6-7
All assignments are to be completed on a separate page with the assignment number \& heading. Be sure to show FULL WORKING OUT for all homework.

PRACTICE Determining the Names and Formulas of Acids

1. Write the formuli
(a) hydrofluoric a
(b) hypochlorou:
2.

ANSWERS
a. HF
b. HClO
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$
d. $\mathrm{H}_{2} \mathrm{~S}$
2. Name each of ths
(a) $\mathrm{HCH}_{3} \mathrm{COO}$
2.
(b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
a. ethanoic or acetic acid
c. carbonic acid
b. sulphurous acid
d. hydriodic acid

SOME COMMON ACIDS

A compound is called an "acid" if the compound has a chemical formula starting with " H ". All of the following acids are assumed to be dissolved in water; that is, they are "aqueous solutions".

$$
\begin{array}{lll}
\mathrm{HF}=\text { hydrofluoric acid } & \mathrm{H}_{2} \mathrm{SO}_{4}=\text { sulphuric acid } & \mathrm{HNO}_{3}=\text { nitric acid } \\
\mathrm{HCl}=\text { hydrochloric acid } & \mathrm{H}_{2} \mathrm{SO}_{3}=\text { sulphurous acid } & \mathrm{HNO}_{2}=\text { nitrous acid } \\
\mathrm{HBr}=\text { hydrobromic acid } & \mathrm{H}_{3} \mathrm{PO}_{4}=\text { phosphoric acid } & \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { or } \mathrm{CH}_{3} \mathrm{COOH}=\text { acetic acid } \\
\mathrm{HI}=\text { hydroiodic acid } & &
\end{array}
$$

Some additional facts about these acids:
HF is used to "etch" or "frost" glass ,
HCl is present in "stomach acid" and is also called "muriatic acid",
HNO_{3} is a very corrosive acid which reacts with most metals,
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is the acid used in automobile batteries,
$\mathrm{H}_{2} \mathrm{SO}_{3}$ is one of the principle components of acid rain,
$\mathrm{H}_{3} \mathrm{PO}_{4}$ is present in most Cola beverages,
A 5% solution of $\mathrm{CH}_{3} \mathrm{COOH}$ is called "vinegar".

SUMMARY: HOW TO PICK THE CORRECT METHOD FOR NAMING A COMPOUND

The first element or ion in a formula is used to decide on the method.

If the first element or ion in the formula is:	Then:
hydrogen	write the name of the acid if the substance is listed under "SOME COMMON ACIDS". use "hydrogen" as the first name and add the name of the anion which follows the "H" if the acid is NOT in the list.
a non-metal (and the formula doesn't contain NH_{4})	use the prefix-naming system
a species listed in the table Names, Formulae, and Charges of Some Common lons	use the name of the cation listed, followed by the name of the anion.
a metal not listed in the table Names, Formulae, and Charges of Some Common lons	use the Stock system (Roman numerals) for the cation, followed by the name of the anion.

chemistry homework

Review Questions

5. In each case below, write out the chemical equation 'orm the given
6. In each case below, write out the chemical equation for the a binary ic Example

ANSWERS:

 $3 \mathrm{Mg}^{2+}$ -(a) sodic
(b) iron(
(c) tin(IV
(d) chrol
2. Write th compou
(a) chror
(b) alum
(c) magr
(d) tin (IV
3. Write th compou
(a) $\mathrm{K}_{2} \mathrm{O}$
(b) ZnBr
(c) PbO_{2}
(d) HgCl
4. Write th compou
(a) pota:
(b) man!
(c) iron(III) and sulphur
(d) copper(II) and iodine

1. a. $\mathrm{Na}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{NaF}$
b. $\mathrm{Fe}^{2+}+2 \mathrm{Br}^{-} \rightarrow \mathrm{FeBr}_{2}$
c. $\mathrm{Sn}^{4+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{SnCl}_{4}$
d. $2 \mathrm{Cr}^{3+}+3 \mathrm{~S}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{~S}_{3}$
2. a. CrCl_{2}
b. AlF_{3}
3. a. potassium oxide
b. zinc bromide chloride
4. a. potassium chloride KCl
b. manganese(IV) oxide MnO_{2}
c. iron(III) sulphide $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
d. copper(II) iodide Cul_{2}
5. a. $\mathrm{Na}++\mathrm{NO} 2 \rightarrow \mathrm{NaNO} 2$
b. $3 \mathrm{Ag}++\mathrm{PO} 43 \rightarrow \mathrm{Ag} 3 \mathrm{PO} 4$
c. $\mathrm{Li}++\mathrm{CH} 3 \mathrm{COO} \rightarrow \mathrm{LiCH} 3 \mathrm{COO}$
d. $2 \mathrm{Cr} 3++3 \mathrm{C} 2 \mathrm{O} 42 \rightarrow \mathrm{Cr} 2(\mathrm{C} 2 \mathrm{O} 4) 3$
6. a. CuClO_{4}
b. $\mathrm{Ca}(\mathrm{HS})_{2}$
7. a. barium phosphate
b. iron(II) bisulphite
c. lead(IV) binoxalate
c. Mgl_{2}
d. SnO_{2}
d. copper(I) dihydrogen phosphate
8. a. for e.g. $\mathrm{FeNa}\left(\mathrm{CrO}_{4}\right)_{2}$ or $\mathrm{FeNa}_{3}\left(\mathrm{CrO}_{4}\right)_{3}$
b. for e.g. $\mathrm{Zn}_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NO}_{3}\right)_{2}$ or $\mathrm{Zn}_{3}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}$
c. lead(IV) oxide
d. mercury(I)
c. $\mathrm{Al}_{2}\left(\mathrm{HPO}_{4}\right)_{3}$
d. $\mathrm{Mg}(\mathrm{OH})_{2}$
te) onic compounds:
nic compounds:
of ions. In BC, we luding two forms
$\left.\mathrm{CO}_{3}\right)(\mathrm{OH})_{2}$
${ }_{3}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{OH})_{2}$
0
:he ions results are is more than n combinations.
Write a possible formula for:
(a) iron(III) sodium chromate
(b) zinc sulphate nitrate
9. Write the formulas of the following molecular compounds:
(a) chlc
(b) tetr

ANSWERS:

(c) ars ϵ
(d) nitr
10. Write t compc
(a) $P_{3} B$
(b) $\mathrm{B}_{2} \mathrm{H}$
(c) SO_{3}
(d) CF_{4}
11. Write t
(a) sod
(b) calc
(c) cop
(d) chr
12. Write t
(a) $\mathrm{Cd}($
(b) Na
(c) CuS
(d) Fe (I
13. Why is
14. Sugge: manne of wat rather
9. a. ClO
b. $\mathrm{P}_{4} \mathrm{O}_{6}$
c. sulphur tri-oxide
11. a. $\mathrm{Na}_{2} \mathrm{SO}_{4}, 10 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CaCl}_{2}, 2 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{CrCl}_{3}, 6 \mathrm{H}_{2} \mathrm{O}$ heptahydrate with the salt ions. polyatomicion
15. a. HBr
b. $\mathrm{H}_{2} \mathrm{CrO}_{4}$
16. a. hydrosulphuric acid
b. perchloric acid
17.
b. HMnO_{4}
c. SO_{2}
d. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
e. $\mathrm{FeSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$
c. AsF_{5}
d. Nl_{3}
10. a. Triphosphorus pentabromide
b. Diboron hexahydride
d. carbon tetrafluoride
c. $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}, \mathrm{H}_{2} \mathrm{O}$
12. a. cadmium nitrate, tetrahydrate
b. sodium monohydrogen phosphate,
c. copper(II) sulphate, pentahydrate
d. iron(III) nitrate, nonahydrate
13. because water is combined in a fixed ratio
14. bracketing the $\mathrm{H}_{2} \mathrm{O}$ might suggest that it is a
c. HClO_{3}
d. HClO
c. nitrous acid
d. thiocyanic acid
a. $\mathrm{K}_{2} \mathrm{O}$ f. HCN
g. SF_{6}
h. $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}, \mathrm{H}_{2} \mathrm{O}$
i. $\mathrm{Cr}\left(\mathrm{HSO}_{3}\right)_{2}$
j. $\mathrm{Mg}(\mathrm{OH})_{2}$

OPTIONAL EXTRA NAMING PRACTICE

You most certainly DO NOT have to complete all of these....I would recommend that you use this as test practice.

COMBINED EXERCISES FOR INORGANIC NAMING

Write the correct name for each of the following.

14. MgO	27. $\mathrm{Na}_{2} \mathrm{SO}_{3}$
15. CuSO_{4}	28. $\mathrm{Pb}\left(\mathrm{HSO}_{4}\right)_{4}$
16. $\mathrm{NaCH}_{3} \mathrm{COO}$	29. WF_{6}
17. $\mathrm{NH}_{4} \mathrm{NO}_{2}$	30. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
18. MoCl_{5}	31. BaS
19. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$	32. $\mathrm{NH}_{4} \mathrm{ClO}_{2}$
20. PtCl_{4}	33. $\mathrm{Fe}(\mathrm{ClO})_{2}$
21. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$	34. $\mathrm{Sn}(\mathrm{CN})_{2}$
22. AIN	35. KrF_{2}
23. KMnO_{4}	36. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
24. $\mathrm{Cu}_{2} \mathrm{SO}_{4}$	37. CaS
25. $\mathrm{H}_{2} \mathrm{SO}_{4}$	38. $\mathrm{Mn}(\mathrm{SCN})_{2}$
26. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	39. AgMnO_{4}
66. Nl_{3}	72. RaSO_{4}
67. CrBr_{2}	73. $\mathrm{KHC}_{2} \mathrm{O}_{4}$
68. $\mathrm{Mg}_{3} \mathrm{P}_{2}$	74. $\mathrm{Cl}_{2} \mathrm{O}$
69. $\mathrm{FeSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	75. TiO_{2}
70. $\mathrm{Ca}(\mathrm{OH})_{2}$	76. $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
71. $\mathrm{H}_{3} \mathrm{PO}_{4}$	77. $\mathrm{Mg}\left(\mathrm{ClO}_{2}\right)_{2}$

Write the chemical formula for each of the following.
40. $\mathrm{Pt}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
41. PBr_{5}
42. $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
43. $\mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}$
44. NH_{3}
45. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
46. NaOH
47. $\mathrm{Ba}(\mathrm{HS})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
48. $\mathrm{N}_{2} \mathrm{O}$
49. HNO_{3}
50. CsHCO_{3}
51. $\mathrm{Cu}_{2} \mathrm{~S}$
52. $\mathrm{C}_{3} \mathrm{~S}_{2}$
78. PbCl_{4}
79. $\mathrm{Fe}\left(\mathrm{HC}_{2} \mathrm{O}_{4}\right)_{3}$
80. $\mathrm{I}_{2} \mathrm{O}_{5}$
81. $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
82. $\mathrm{Zn}(\mathrm{OH})_{2}$
83. $\mathrm{H}_{2} \mathrm{~S}$
53. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
54. $\mathrm{Co}\left(\mathrm{ClO}_{3}\right)_{2}$
55. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
56. $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
57. $\mathrm{CH}_{3} \mathrm{COOH}$
58. MnPO_{4}
59. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
60. $\mathrm{Sr}(\mathrm{ClO})_{2}$
61. VN
62. $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}$
63. CoF_{3}
64. BaSO_{3}
65. $\mathrm{CuCr}_{2} \mathrm{O}_{7}$
84. XeO_{3}
85. TiCl_{2}
86. HF
87. $\mathrm{Sn}\left(\mathrm{CrO}_{4}\right)_{2}$
88. $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
89. PtS_{2}
90. silver chloride
91. sulphur dioxide
92. iron(III)oxalate
93. beryllium oxide
94. lead(II) acetate decahydrate
95. potassium chromate
96. mercury (I) acetate
97. molybdenum(III) chloride
98. ammonia
99. gold(III) sulphide
100. silver dichromate

101 calcium acetate
102. chromium(III) oxalate

103 calcium nitrite
104. difluorine dioxide
105. molybdenum(V) oxide
106. silicon tetrafluoride
107. cadmium(II) acetate
108. mercury(II) chloride
109. lithium hydrogen sulphite
110. acetic acid
111. magnesium chlorate hexahydrate
112. phosphorus trifluoride
113. copper(II) iodide
114. calcium nitride
115. magnesium hydroxide
116. molybdenum (V) sulphide trihydrate
117. iron(II) dihydrogen phosphate
118. carbon tetraiodide
119. zinc sulphate
120. mercury(I) sulphide
121. sulphurous acid
122. iron(II) fluoride octahydrate
123. magnesium hydrogen sulphate
124. aluminum sulphide
125. radium carbonate
126. xenon tetrafluoride
127. sodium oxide
128. barium phosphate
129. mercury(I) nitrate dihydrate
130. sodium hypochlorite
131. gold(I) cyanide
132. tin(IV) bromide
133. hydroiodic acid
134. tetrasulphur tetranitride
135. iron(II) hydroxide
136. copper(I) fluoride
137. tin(II) hydrogen carbonate
138. dinitrogen pentoxide
139. zinc hydrogen sulphite
140. zinc perchlorate hexahydrate
141. gold(III) nitrate
142. manganese(III) sulphate
143. hydrochloric acid
144. chromium(II) oxide
145. zinc hydrogen sulphide
146. molybdenum(VI) sulphide
147. iron(III) carbonate
148. iodine pentafluoride
149. manganese(IV) oxide
150. hydrogen cyanide
151. iron(III) sulphate nonahydrate
152. potassium nitrite
153. chromium(III) phosphide
154. nickel(II) hydroxide
155. chlorine tetroxide
156. mercury (II) thiocyanate
157. nitrous acid
158. lead(II) carbonate
159. sodium hydrogen oxalate
160. aluminum bromide hexahydrate
161. lead(II) iodide
162. silver oxide
163. manganese(IV) monohydrogen phosphate

