Chemistry 11

Unit 2: Introduction to Chemistry

Book 2: Unit Conversions \& Scientific Notation

Name: KEY Block:
\longrightarrow "Dimension Analysis"

Unit Conversations
A Conversion factor is a fraction or factor written so that the denominator and numerator are equivalent values with different units.

One of the most useful conversion factors allows the user to convert from the \qquad metric to the \qquad imperial sustem
and vice versa.
Since 1 inch is exactly the same length as 2.54 cm , the factor may be expressed as:
doesnit matter

$$
\left\{\frac{1 \text { inch }}{2.54 \mathrm{~cm}} 5=\frac{2.54 \mathrm{~cm}}{\text { "equivalency }} \frac{.5 \text { inch }}{\text { statements " }}\right\}
$$

which is cntap boot om The values are still equal.

These two lengths are identical so multiplication of a given length by the conversion factor will not change the length. It will simply express it in a different unit. $x<h x \frac{1 \text { in }}{2.54 y h}=\frac{x}{2.54}$ inch
Q:
.Now if you wish to determine how many centimetres are in a yard, you have two things to consider.
yd.
(1)

First, which of the two forms of the conversion factor will allow you to CAMCl the imperial unit, converting it to a metric unit?

Notice tapas with the mutidification of any factions it its possible to cancel any thing that appears on the top AND bottom

Figure 1.4.2 A ruler with both imperial and metric scales shows that 1 inch $=2.54 \mathrm{~cm}$.

We've simply followed a numerator-to-denominator pattern to convert yards to feet to inches to cm .

The number of feet in a yard and inches in a foot are \qquad defined values. They are not things we measured. Thus they ada affect the number of significant figures in our answer.
This will be the case for any. Conversion factors in which the numerator and denominator are in the same system (both metric or both imperial).
As all three of the conversion factors we used are \qquad defined value only the original value of 1.00 yards influences the significant figures in our answer. Hence we round the answer to three sig figs.

Example: How many minutes are there in 3480 seconds?

$$
\frac{3480 \$}{3 s^{0} .} \times \frac{1 \mathrm{~min}}{60 \$}=\frac{58.0 \mathrm{~min}}{\text { opposite units cancel. }}
$$

Both 60 s and 1 min are the same length of time. "Equal to", this is the conversion factor.
Multiplying by the converstion facer did not change the VALUE fo the time.
However, the units are different after using the conversion factor: we started with a LARGE number of small units and ended up with a small number of LARGE units.

The method of unit conversions uses conversion factors to change the units associated with an expression to a different set of units.

Every unit conversion problem has three major pieces of information which must be identified:
i) the unknown amount and its units
ii) the initial amount and its units
iii) a conversion factor which relates (connects) the initial units to the units of the unknown

INCREDIBLY, VITALLY IMPORTANT NOTE
In all the calculations which follow you must ALWAYS include the units, for they are the "major players" in the calculation. If you are tempted to omit or "forget about" the units, DON'T! The course you fall could be Chem 11 !

Example: If a car can go 80 km in 1 h , how far can the car go in $8,5 \mathrm{fi}$?

Example: If 0.200 mL of gold has a mass of 3.86 g , what is the mass of 5.00 mL of gold?

chemistry homework
Assignment \#4- Hebden pg 11-14 Questions \#1-2
All assignments are to be completed on a separate page with the assignment number \& heading. Be sure to show FULL WORKING OUT for all homework.

Multiple Unit
Conversions

What happens when there is more than one conversion factor involved in a problem?

REMEMBER: your conversion factor must include a fraction where the numerator (top) and denominator (bottom) are equivalent values with different units.

Example: If eggs are $\$ 1.44 / \mathrm{doz}$ and if there are 12 eggs/doz, how many individual eggs can be bought for $\$ 4.32$?

UNKNOWN AMOUNT: how many egos?

Example: The gas tank of a Canadian tourist holds 39.4 L of gas. If 1 L is equal to 0.264 gal in the US, and gas is $\$ 1.26 / \mathrm{gal}$, how much will it cost to fill up south of the border?

UNKNOWN AMOUNT:
how much will it cost?

$$
39.4 L
$$

OVERALL CONVERSTION REQUIRED:
chemistry homework
Assignment \#5- Hebden pg 15-16 Questions \#3-8
All assignments are to be completed on a separate page with the assignment number \& heading. Be sure to show FULL WORKING OUT for all homework.

Converting Within the Metric System

Measures	Unit Name	Symbol
length	metre	m
mass	gram	g
volume	litre	L
time	second	s

SOME IMPORTANT EQUIVALENCES

```
1mL}=1\mp@subsup{\textrm{cm}}{}{3
1m}\mp@subsup{\textrm{m}}{}{3}=1\mp@subsup{0}{}{3}\textrm{L
1t}=1\mp@subsup{0}{}{3}\textrm{kg
```

Table 1.4.1 SI Prefixes

Prefix	Symbol	$\mathbf{1 0}^{\mathbf{n}}$
gotta	Y	10^{24}
zetta	Z	10^{21}
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	z	10^{-21}
yocto	y	10^{-24}

$\xrightarrow{\rightarrow \text { eg.g } \rightarrow \mathrm{kg}}$ $\xrightarrow{\rightarrow \text { eg.g } \rightarrow \mathrm{kg}}$

The metric system is based on powers of The power of 10 is indicated by a simple prefixes.
You will need to memorize from "nano" 10^{-9} to "giga" 10^{9}. You should highlight these.

Metric conversions require either one o
metric conversion by the presence of a \qquad base unit \qquad 10
\qquad Table 1.4.1 is a list of SI

The common base units in the metric system include: $\mathrm{m}, \mathrm{g}, \mathrm{L}$ and s .

Example: re-write 5 kilograms using PREFIX and UNIT SYMBOLS and the correct EXPONENTIAL EQUIVALENT Prefix $=k$ ilo 5 kilograms $=5 \times 10^{3} g$ it symbol $=k$ \exp.equivalent $=10^{3}$
\qquad

Example: re-write $2.7 \times 10^{-2} \mathrm{~m}$ using WRITTEN PREFIX and UNIT and the correct PREFIX SYMBOL eXp \rightarrow pref

PRACTICE

base

1. Re-write the following using PREFIX and UNIT SYMBOLS, an EXPONENTIAL EQUIVALENTS.
(a) 2.5 centimetres
(c) 25.2 millimoles
(e) 0.25 megailites
(b) 1.3 kilograms
(d) 5.1 decigrams
(f) 6.38 micrograms
a) $2.5 \times 10^{-2} \mathrm{~m}$
c) $25.2 \times 10^{-3} \mathrm{~mol}$
e) $0.25 \times 10^{6} \mathrm{~L}$
f) $6.38 \times 10^{-6} \mathrm{~g}$
2. Re-write the following using WRITTEN PREFIXES and UNITS, and EXPONENTIAL EQUIVALENTS.
(a) $2.5 \mathrm{~mm}^{\text {base }}$
(c) $1.9 \mathrm{kmol}{ }^{\prime} \mathrm{Mol}$
(e) 9.94 cg
(b) 6.5 dL
(d) 4 Mt
(f) $1.25 \mu \mathrm{~s}$
a) $\frac{2.5 \times 10^{-3} \mathrm{~m}}{6.5 \times 10^{-1}} 2$
c) $\frac{1.9 \times 10^{3} \mathrm{~mol}}{4 \times 10^{6} t}$
e) $\frac{9.941 \times 10^{-2}}{\text { f) } 1.25 \times 10^{-6}} \mathrm{~g}$

WRITTEN PREFIXES and UNITS.
13. Re-write the following using PREFIX SYMBOLS, and
(a) $4.5 \times 10^{-3} \mathrm{~mol}$
(c) $0.50 \times 10^{-6} \mathrm{~L}$
(e) $8.85 \times 10^{6} \mathrm{t}$
(b) $1.6 \times 10^{3} \mathrm{~m}$
(d) $2.68 \times 10^{-1} \mathrm{~g}$
(f) $7.25 \times 10^{-2} \mathrm{~m}$
a) 45 mmol
b) 1.6 km
c) $0.50 \mu \mathrm{~L}$
e) 8.85 Mt
d) 2.68 dg
f) $\frac{.5}{7.25 \mathrm{~cm}}$

One \& Two-Step Conversions

One step metric conversions involve a base unit (metres, litres, grams, $\overline{\text { or seconds) being converted to a pref fix unit or a prefixed unit being converted to }}$ a base unit. $\rho g . m \rightarrow \mu m$ or

Metric conversions involve using unit conversions between prefix symbols and exponential equivalents.
EXAMPLES: (a) Write a conversion statement between $\mathbf{c m}$ and m .
expchent AL WAS
-1 alucince "c" stands for "10 $10^{-2 "}$ " then $\sqrt{1] m}=10^{-2} \mathrm{~m}$.
(b) Write a conversion statement between ms and s .

Since " m " stands for " 10^{-3-} then $1 \mathrm{~ms}=10^{-3} \mathrm{~s}$.

$$
\begin{aligned}
& \text { exponent ALWAR } \\
& 10)^{-2} \mathrm{~cm} \text { w with the BASE }
\end{aligned}
$$

$$
\underbrace{10^{-2} \mathrm{~cm}}=1 \mathrm{~m}
$$

$$
0.01 \mathrm{~cm} \text { ㄴ } 1 \mathrm{~m}
$$

This diagram (right) shows how a given base unit is related to the important prefix symbols.

Example: How many micrometres are there in 5 cm ?

Sample Problems - Two-Step Metric Conversions

1. Convert $6.32 \mu \mathrm{~m}$ into km .

2. This problem presents with two prefixes so there must be two steps.
The first step in such a problem is always to convert to the base unit. Set up the units to convert from $\mu \mathrm{m}$ to m and then to km .
3. Insert the values for $1 \mu \mathrm{~m}$ and 1 km .

$$
\begin{aligned}
& 1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
& 1 \mathrm{~km}=10^{3} \mathrm{~m}
\end{aligned}
$$

3. Give the answer with the correct number of significant figures and the correct unit.

Practice Problems - One- and Two-Step Metric Conversions

1. Convert 16 s into ks. $\frac{16 \mathrm{~s}}{1} \times \frac{1 \mathrm{ks}}{10^{3} \mathrm{~s}}=16 \times 10^{-3} \mathrm{ks}$
2. Convert 75000 mL into $\mathrm{L} .75000 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=75000 \times 10^{-3} \mathrm{~L}=75 \mathrm{~L}$
3. Convert 457 ks into ms. $457 \mathrm{ks} \times \frac{10^{3} \mathrm{~s}}{1 \mathrm{ks}} \times \frac{1 \mathrm{~ms}}{10^{-3 \mathrm{~s}}}=457 \times 10^{6} \mathrm{~ms}$ (ar $4.57 \times 10^{8} \mathrm{~ms}$)

$$
\left\{\frac{\left(10^{-4}\right)\left(10^{6}\right)}{-1}=10^{(-4+6)-(-1)=3}\right.
$$

Units like those used to express rate $(\mathrm{km} / \mathrm{h})$ or density (g / mL) are good examples of derived units.
EXAMPLE: The heat change occurring when the temperature of a water sample increases is given by
 in neat mass (s)
"Specifccractcracation" $\left.c=\frac{\Delta H}{m \cdot \Delta t}=\frac{J}{g \cdot c}\right\}$ Therefore, c, is a der m and $A T$) and their units.

PRACTICE Show FULL WORKING OUT on THIS PAGE in the space provided below.
29. Find the derived value and units for
(a) the molar concentration, c, using the equation $c=\frac{n}{v},=\frac{0.250 \mathrm{~mol}}{0.500 \mathrm{~L}}=0.500 \frac{\mathrm{~mol}}{\mathrm{~L}}$
where: $n=0.250 \mathrm{~mol}$ and $V=0.500 \mathrm{~L}$.
(b) the Universal Gas Constant, R, using the equation ${ }^{\prime} R=\frac{\boldsymbol{P} \cdot \boldsymbol{V}}{n \cdot T}$,
i) where $P=1 \mathrm{~atm}, \quad V=22.4 \mathrm{~L}, \quad n=1 \mathrm{~mol}$ and $\boldsymbol{T}=273 \mathrm{~K}$ (K is the temperature on the Kelvin scale.
ii) where $\boldsymbol{P}=202.6 \mathrm{kPa}, \boldsymbol{V}=24.45 \mathrm{~L}, \boldsymbol{n}=2 \mathrm{~mol}$ and $\boldsymbol{T}=298 \mathrm{~K}$.
(c) the entropy change for the boiling of water, ΔS, using the equation $\Delta H=T \cdot \Delta S$, where: $\Delta \boldsymbol{H}=44.0 \mathrm{~kJ}$ and $\boldsymbol{T}=373 \mathrm{~K}$. (Hint: you will have to rearrange the equation first.)
(d) the kinetic energy of hydrogen gas at $0^{\circ} \mathrm{C}, K E$, using the equation $K E=\frac{1}{2} m \cdot v^{2}$, where: $m=3.35 \times 10^{-27} \mathrm{~kg}$ and $v=1692 \frac{\mathrm{~m}}{\mathrm{~s}}$.
b) $R=\frac{P \cdot V}{n \cdot T}$

$$
\begin{aligned}
& \text { i) } R=\frac{(1 \mathrm{~atm})(22.4 \mathrm{~L})}{(1 \mathrm{~mol})(273 \mathrm{~K})}=0.0821 \frac{\mathrm{at} \mathrm{~m} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \text { ii) } R=\frac{(262.6 \mathrm{kR})(24.45 \mathrm{~L})}{(2 \mathrm{~mol})(298 \mathrm{~K})}=8.31 \frac{\mathrm{kPa.L}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

Derived unit conversions require cancellation in 2 directions from numerator to denominator as usual AND from denominator to numerator).

Example: Express $5 \mathrm{Mg} / \mathrm{mL}$ in $\mathrm{k} \boldsymbol{p}$ lograms/litre

$$
\frac{5 \mathrm{mg}}{m \mathrm{~s}} \times \frac{1 \mathrm{~m}}{10^{3} \mathrm{~L}} \times \frac{10^{6} \mathrm{~g}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~kg}}{10^{3} g}=\frac{5 \times 10^{\circ} \mathrm{kg}}{\mathrm{~L}}
$$

Sample Problem - Derived Unit Conversions
Convert $55.0 \mathrm{~km} / \mathrm{h}$ into m / s

What to Think about

1. The numerator requires conversion of a prefixed metric unit to a base metric unit. This portion involves one step only and is similar to sample problem one above.
2. The denominator involves a time conversion from hours to minutes to seconds. The denominator conversion usually follows the numerator.
Always begin by putting all conversion factors in place using units only. Now that this has been done, insert the appropriate numerical values for each conversion factor.
3. As always, state the answer with units and no figures (in this case, three).

How to Do It

$$
\begin{aligned}
& k m \rightarrow m \\
& h \rightarrow m i n \rightarrow s \\
& 1 \mathrm{~km}=\frac{10^{3}}{} \mathrm{~m} \\
& 1 \mathrm{~m} \rightarrow \mathrm{~m}=60 \mathrm{~s} \\
& 60 \mathrm{~min}=1 \mathrm{hr}
\end{aligned}
$$

$$
\begin{array}{r}
55 . \frac{\mathrm{km}}{\mathrm{~h}} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 K}{60 \mathrm{~m} / \mathrm{m}} \times \frac{1 \mathrm{mix}}{60 \mathrm{~s}}=? \frac{\mathrm{~m}}{\mathrm{~s}} \\
\frac{(55)\left(10^{3}\right)}{(1)(60)(60)}=15.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Practice Problems - Derived Unit Conversions

1. Convert $2.67 \mathrm{~g} / \mathrm{mL}$ into kg / L Why has the numerical value remained unchanged?

$$
2.6 \frac{75}{m e} \times \frac{1 \mathrm{~kg}}{10^{3} g} \times \frac{1 \mathrm{mK}}{10^{.31}}=\frac{2.67}{\left(10^{3}\right)\left(10^{-3}\right)}=2.67 \frac{\mathrm{~kg}}{\mathrm{~L}}
$$

2. Convert the density of neon gas from $8.9994 \times 10^{-4} \mathrm{mg} / \mathrm{mL}$ into kg / L.
$8.9994 \times 10^{-4} \frac{\mathrm{mg}}{\mathrm{mL}} \times \frac{10^{-3}}{1 \mathrm{mg}} \times \frac{1(\mathrm{~kg})}{10^{3}} \times \frac{1 \mathrm{~K}}{10^{-3} \mathrm{~L}}=\frac{\left(8.9994 \times 10^{-4}\right)\left(10^{-3}\right)}{(1)\left(10^{3}\right)\left(10^{-3}\right)}=\frac{8.9994 \times 10^{-7}}{10^{3+(-3)}}$
3. Convert $35 \mathrm{mi} / \mathrm{h}$ (just over the speed limit in a U.S. city) into mas. (Given: 5280 feet $=1$ mile)
$35 \mathrm{mi} \times 5280 \mathrm{ft} \times \frac{1 \mathrm{~m}}{3} \times \frac{1 \mathrm{~h}}{-9.9994 \times 10^{-7} \mathrm{~kg}}$
4. Convert $35 \mathrm{mi} / \mathrm{h}$ (just over the speed limit in a U.S. city) into m / s. (Given: 5280 feet $=1$ mile)

$$
-8.999
$$

Use of a Derived Unit as a Conversion Factor
eg. mass

A quantity expressed with a derived unit may be used to convert a unit that measures one thing into a unit that measures something completely different es. volume
The most common examples are the use of rate to convert between distance and \qquad time and the use of \qquad density to convert between \qquad mass and \qquad volume -

The keys to this type of problem are determining which form of the conversion factor to use and where to start.

Example: factor

- Suppose we wish to use the speed of sound ($33 \mathrm{~m} / \mathrm{m}$) to determine the time (in hours) required for an explosion to be heard 5.0 km away. \leftarrow (starting ucreme)
It is always a good idea to begin any conversion problem by considering what we are trying to find? Begin with the end in mind. This allows us to decide where to begin.
Do we start with 5.0 km or $330 \mathrm{~m} / \mathrm{s}$?

First, consider: are you attempting to convert unit \rightarrow unit, or $\frac{\text { unit }}{\text { unit }}$ unit ?

The answer is \qquad $\mathrm{km} \rightarrow \mathrm{h}$ begin with the single unit: km .
The derived unit will serve as the conversion factor.

$$
\begin{aligned}
& \text { n with the single unit: } \mathrm{km} \text {. } \\
& \text { on factor. } \\
& 33 \mathrm{Gm} \\
& \mathrm{~s}
\end{aligned} \frac{330 \mathrm{~m}}{1 \mathrm{~s}}
$$

Second, which of the two possible forms of the conersion factor will allow conversion of a distance in km into atimeinh Plan:

mass $\stackrel{\text { density }}{\leftrightarrows}$ volume
PRACTICE - Use of Rate and Density as Conversion Factors

1. The density of mercury metal is $13.6 \mathrm{~g} / \mathrm{mL}$. What is the mass of 2.5 L ?

$$
2.5 \mathrm{~L} \times \frac{1 \mathrm{~m} \mathrm{~L}}{10^{-3} \mathrm{~L}} \times \frac{13.6 \mathrm{~g}}{1 \mathrm{~mL}}=34000 \mathrm{~g} \text { of Mercury. }
$$

2. The density of lead is $11.2 \mathrm{~g} / \mathrm{cm}^{3}$. The volumes $1 \mathrm{~cm}^{3}$ and 1 mL are exactly equivalent. What is the volume in L

$$
\text { of a } 16.5 \mathrm{~kg} \text { piece of lead? } \mathrm{Ig} .5 \mathrm{~kg} \times \frac{1 \mathrm{~cm}^{3}}{10^{3} \mathrm{~kg}} \times \frac{1 \mathrm{~mL}}{11.2 \mathrm{~g}} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~cm}}=1.47 \mathrm{~L} \mathrm{ol} \mathrm{~Pb}
$$

3. The speed of light is $3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$. Sunlight takes 8.29 min to travel from the photosphere (light-producing region) of the Sun to Earth. How many kilometres is Earth from the Sun? $8.29 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \times \frac{3.0 \times 10^{10} \mathrm{~cm}}{1 \mathrm{~s}} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}=1.5 \times 10^{8} \mathrm{~km}$ If a unit is squared or cubed, it may be cancelled in one of two ways.

Conversions
Involving Units with
Exponents (Another Kind of Derived Unit)

It may be written more than once to convey that it is being multiplied by itself or it may be placed in brackets with the exponent applied to the number inside the brackets as well as to the unit.

Hence, the use of the equivalency $1 \mathrm{~L}=1 \mathrm{dm}^{3}$ to convert $1 \mathrm{~m}^{3}$ to L might appear in either of these formats:

$$
\begin{aligned}
& \underbrace{\frac{1 \mathrm{~m}^{3} \times}{\left(\frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}}\right)} \times \frac{1 \mathrm{~L}}{1 \mathrm{dm}^{3}} \text { OR } 1 \mathrm{~m}^{3} \times\left(\frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}}\right) \underbrace{3 \times \frac{1 \mathrm{~L}}{1 \mathrm{dm}^{3}}}_{\text {unitstill cancel. }}=100 \mathrm{~L}}_{\text {need te cancel } 3 \times \text { the } m^{\prime \prime}} \\
& \text { un it still cancel. }
\end{aligned}
$$

Sample Problem - Use of Conversion Factors Containing Exponents
2. Once the units have been aligned correctly, insert the appropriate numerical values.
3. Calculate the answer with the correct unit and number of significant figures.

Because it deals with atoms, and they are so incredibly small, the study of chemistry

Using Scientific Notation
-2.3445×10^{3} is notorious for using very large and very tiny numbers. For example, if you determine the total number of atoms in a sample of matter, the value will be very large. If, on the other hand, you determine an atom's diameter or the mass of an atom, the value will be extremely small. The method of reporting an ordinary, expanded number in scientific notation is very handy for both of these things.
Scientific Notationefers to the method of representing numbers in \qquad exponential form. Exponential numbers have two parts. Consider the following example:
Standardiah $\longrightarrow 24500$ becomes 2.45×10^{4} in scientific notation
Convention states that the first portion of a value in scientific notation should always be expressed as a number
This portion is called the mantissa or the decimal portion
The second portion is the \qquad raised to some power.

It is called the ordinate or the exponential portion.

$$
\text { mantissa } \rightarrow 2.45 \times 10^{4} \text { and } 2.45 \times 10_{-}^{4} \leftarrow \text { ordinate }
$$

A Persitiue exponent in the ordinate indicates a $\angle A R G E$ number in scientific notation, while a \qquad exponent indicates a \qquad
In fact the exponent indicates the number of 10 s that must be multiplied together to arrive at the number represented by the scientific notation. If the exponents are negative, the exponent indicates the number of tenths that must be multiplied together to arrive at the number.
In other words, the expoonentiodidiates st he number of places the decimal in the mantissa must be moved to correctly arrive at the the number.
 notation (also called standard notation) version of (expanded)
Scientific Notation to Numbers
Scientific Notation involves moving decimals.

\qquad A of places the decimal must be moved to the the number while a Negative exponent indicates the number of places the decimal must be moved to the eff.

PRACTICE

1. Change the following numbers from scientific notation to expanded notation.
(a) $2.75 \times 10^{3}=2750$ (t) $27 \mathrm{P} \rightarrow$ decimal right
(b) $5.143 \times 10^{-2}=0.05|\angle| 3 \in \Omega \times p \leftarrow$ decimal euft.
2. Change the following numbers from expanded notation to scientific notation.
(a) $69.547=6.9547 \times 10^{4}<4$ decimal moved 4 places \leftrightarrows large $\#$
(b) $0.00168=1.68 \times 10^{-3} \leftarrow$ decimal moved 3 places - Small $甘$ (1)

SCIENTIFIC NOTATION
Regular Notation (RN)- The Standard Why/that we write our numbers.
Ex: Two Hundred and Eight Million is written \qquad
Scientific Notation (SN)- A shorthand way of writing really large or really small numbers. In SN a number is written as the product of two factors Ex: $280,000,000$ can be written in scientific notation as 2.8×10^{8}

eg. 2.8×10^{3}
2×10^{4}

chemistry homework

Assignment \#7- Scientific Notation Practice Questions
Complete the following questions in the space provided.

SCIENTSFSC NOTATION

CONVERT EACH NUMBER IN

SCIENTIFIC NOTATION TO REGULAR NOTATION

If exponent is Negative Move decimal to the Left Add zeros where needed.

If exponent is Positive Move decimal to the Right Add zeros where needed.

1. $2.47 \times 10^{-3} \quad 0.0247$
2. 9.3×10^{7}
$93,000,000$
3. 8.5×10^{-5}
0.000085
4. 2.07×10^{6}
$2,070,000$
5. 7×10^{-8}
0.00000007
6. 3×10^{2}

300
7. 4.5×10^{-5}
8. 5.5×10^{5}
9. 6.3×10^{-1}
0.83
10. 1.98×10^{4}

19,800
11. 2.4×10^{-5}
12. 9.2×10^{7}
0.000024
$92,000,000$

1. 0.0024
2.4×10^{-3}
2. 0.0000035
3.5×10^{-6}
3. 5,804
5.604×10^{3}
4. 45,995
4.5995×10^{4}
5. 693.75
6.9375×10^{2}
6. 754.256
7.54256×10^{2}
7. 0.087
8.7×10^{2}
8. 0.0088
8.8×10^{-3}
9. $8,550,000$
8.550×10^{-6}
10. 18.907
1.8×10^{1}
11. $12,000,000$
1.2×10^{7}
12. 25,009
13. 5009×10^{4}

Multiplication and Division in Scientific Notation
To Mu Tifly two numbers in scientific notation, we multiply the decimal \#s and state their product multiplied by 10 , raised to a power that is the SuM of the expone

To divide two numbers in scientific notation, we divide one mantissa by the other and state their quotient multiplied by 10 , raised to a power that is the difference between the exponents.

$$
\left(A \times 10^{a}\right) \div\left(B \times 10^{b}\right)=(A \div B) \times 10^{(a-b)}
$$

Sample Problems - Multiplication and Division Using Scientific Notation
Solve the following problems, expressing the answer in scientific notation.

1. $\left(2.5 \times 10^{3}\right) \times\left(3.2 \times 10^{6}\right)=$
2. $\left(9.4 \times 10^{-4}\right) \div\left(10^{-6}\right)=$
What to Think about

Question 1

1. Find the product of the mantissas
2. Raise 10 to the sum of the exponents to determine the ordinate.
3. State the answer as the product of the new mantissa and ordinate.
Question 2
4. Find the quotient of the mantissas. When no mantissa is shown, it is assumed that the mantissa is 1 .
5. Raise 10 to the difference of the exponents to determine the ordinate.
6. State the answer as the product of the mantissa and ordinate.

PRACTICE - Multiplication and Division Using Scientific Notation
Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers. Compare your method of solving with a calculator with that of another student.

1. $\left(4 \times 10^{3}\right) \times\left(2 \times 10^{4}\right)=8 \times 10^{7}$ 0.2×10^{3}
2. $\left(9.9 \times 10^{5}\right) \div\left(3.3 \times 10^{3}\right)=3.0 \times 10^{2}$
3. $10^{9} \div\left(5.0 \times 10^{6}\right)=$ L 2.0×10^{2}
4. $\underbrace{\left[\left(3.1 \times 10^{-4}\right) \times\left(6.0 \times 10^{7}\right)\right]}_{c} \div\left(2.0 \times 10^{5}\right)=9.3 \times 1$
5. $\left[\left[\left(4.5 \times 10^{12}\right) \div\left(1.5 \times 10^{4}\right)\right] \times\left(2.5 \times 10^{-6}\right)=7.5 \times 10^{2}\right.$

$$
1.86 \times 10^{4}
$$

Addition and Subtraction in Scientific Notation

Remember that a number in proper scientific notation willalways have a mantissa between 1 and 10 Sometimes it becomes necessary to s hoffa decimal in order to express a number in proper scientific notation.

The number of places shifted by the decimal is indicated by an equivalent change in the value 1) of the exponent. If the decimal is shifted Kef , the exponent becomes \qquad
(2) shifting the decimal to the Right causes the exponent to become smaller

Another way to remember this is if the mantissa becomes smaller following a shift, the exponent becomes larger. Consequently, if the exponent becomes larger, the mantissa becomes smaller. Consider $A B . C \times 10^{x}$: if the decimal is shifted to change the value of the mantissa by 10^{n} times, the value of x changes $-n$ times.

For example,
A number such as 18235.0×10^{2} (1823500 in standard notation) requires the decimal to be places to the \qquad to give a mantissa between 1 and 10 , that is 1.82350 . A Le shift 4 places, means the exponent in the ordinate becomes \qquad (from 10^{2} to 10^{6}). The correct way to express 18235.0×10^{2} in scientific notation is 1.82350×10^{6}. Notice the new mantissa is 10^{4} smaller, so the exponent becomes 4 numbers larger.

PRACTICE

Express each of the given values in proper scientific notation in the second column. Now write each of the given values from the first column in expanded form in the third column. Then write each of your answers from the second column in expanded form. How do the expanded answers compare?

When adding or subtracting numbers in scientific notation, it is important to realize that we add or subtract only the mantissa. Do not add or subtract the exponents!

decimal part

Steps for Adding + Subtracting in Scientific Notation

1) Shift the decimal to obtain the SCam number for the exponent in the ordinate of both numbers to be added or subtracted.
2) Sum(s) or take the difference of the mantissas. decimal numbers.
3) Convert back to proper scientific notation when finished. (ie needed)

Sample Problems - Addition and Subtraction in Scientific Notation

Solve the following problems, expressing the answer in proper scientific notation.

1. $\left(5.19 \times 10^{3}\right)-\left(3.14 \times 10^{2}\right)=$
2. $\left(2.17 \times 10^{-3}\right)+\left(6.40 \times 10^{-5}\right)=$

What to Think about

Example \#1

1. Begin by shifting the decimal of one of the numbers and changing the exponent so that both numbers share the same exponent.
For consistency, adjust one of the numbers so that both numbers have the larger of the two ordinates.
The goal is for both mantissas to be multiplied by 10^{3}. This means the exponent in the second number should be increased by one. Increasing the exponent requires the decimal to shift to the left (so the mantissa becomes smaller).
2. Once both ordinates are the same, the mantissas are simply subtracted.

Example \#1 - Alternate Approach

1. It is interesting to note that weruld have altered the first number instead. In that case, 5.19×10^{3} would have become 51.9×10^{2}.
2. In this case, the difference results in a number that is not in proper scientific notation as the mantissa is greater than 10.
3. Consequently, a further step is needed to convert the answer back to proper scientifiemotation. Shifting the decimal one place to the left (mantissa becomes smaller) requires an increase of 1 to the exponent.

Example \# 2

1. As with differences, begin by shifting the decimal of one of the numbers and changing the exponent so both numbers share the same ordinate.
The larger ordinate in this case is 10^{-3}.
2. Increasing the exponent in the second number from -5 to -3 requires the decimal to be shifted two to the left (make the mantissa smaller).
3. Once the exponents agree, the mantissas are simply summed.

PRACTICE 一 Addition and Subtraction in Scientific Notation
Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers. Compare your use of the exponential function on the calculator with that of a partner.

$$
\begin{aligned}
& \text { mpareyourghswegs com } \\
& * \text { sh i } \\
& 20.6 .228 \times 10^{-4} \\
& +4.602 \times 10^{-3}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { 1. } \begin{array}{l}
8.068 \times 10^{8} \\
\frac{-4.14 \times 10^{7}}{}
\end{array} & \begin{array}{c}
20 \cdot 6.228 \times 10^{-4} \\
7.54 \times 10^{8}
\end{array} \\
\hline \frac{+4.602 \times 10^{-3}}{2248} \times 10^{-3}
\end{array}
$$

3. 49.001×10^{1}

Scientific Notation and Exponents

Occasionally a number in scientific notation will be raised to some power. When such a case arises, it's important to remember when one exponent is raised to the power of another, the exponents are multipleid one
\rightarrow Consider a problem like $(103,2) \quad 10^{3 \cdot 2}=10^{6}$
This is really just $(10 \times 10 \times 10)^{2}$ or $(10 \times 10 \times 10 \times 10 \times 10 \times 10)$. So we see this is the same as $10^{(3 \times 2)}$ or 10^{6}.

chemistry homework
Assignment \#8- Scientific Notation Topic Review Complete the following questions in the space provided. Be sure to SHOW FULL WORKING OUT!

Topic Review:
Solve the following problems, expressing the answer in scientific notation, without the use of a calculator.
Repeat the problems with a calculator and compare your answers.

1. $\left(10^{3}\right)^{5}$
2. $\left(2 \times 10^{2} 7\right.$
3. $15 \times 10^{4} 0$
4. $\left(3 \times 10^{5}\right)^{2} \times\left(2^{4} \times 10^{4}\right)^{2}$
$10^{3.5}=10^{15}$

$$
2^{3} \times 10^{2 \cdot 3}
$$

$$
5^{2} \times 10^{4.2}
$$

$$
\left(3^{2} \times 10^{5.2}\right) \times\left(2^{2} \times 10^{4 .} \cdot 1.2\right)
$$

$$
=8 \times 10^{6}=25 \times 10^{8} \quad\left(9 \times 10^{10}\right) \times\left(4 \times 10^{8}\right)=\left(\begin{array}{ll}
2.4) \times 10^{10+8}=
\end{array}\right.
$$

 notation is expressed correctly).

Scientific Notation	Expanded Notation
3.08×10^{4}	30800
9.6×10^{2}	960
4.75×10^{-3}	0.00475
4.84×10^{-4}	0.000484
0.0062×10^{5}	620

6. Give the product or quotient of each of the following problems (express all answers in proper form scientific notation). Do not use a calculator.
(a) $\left(8.0 \times 10^{3}\right) \times\left(1.5 \times 10^{6}\right)=$ 1.2×10^{10}
(b) $\left(1.5 \times 10^{4}\right) \div\left(2.0 \times 10^{2}\right)=7.5 \times 10^{1}(75)$
(c) $\left(3.5 \times 10^{-2}\right) \times\left(6.0 \times 10^{5}\right)=2.1 \times 10^{4}$
(d) $\left(2.6 \times 10^{7}\right) \div\left(6.5 \times 10^{-4}\right)=4.0 \times 10^{16}$
7. Give the product or quotient of each of the following problems (express all answers in proper form scientific notation). Do not use a calculator.
(a) $\left(3.5 \times 10^{4}\right) \times\left(3.0 \times 10^{5}\right)=$

(b) $\left(7.0 \times 10^{6}\right) \div\left(1.75 \times 10^{2}\right)=4.0 \times\left(0^{4}\right.$
(c) $\left(2.5 \times 10^{-3}\right) \times\left(8.5 \times 10^{-5}\right)=2.13 \times 10^{-7}$
(d) $\left(2.6 \times 10^{5}\right) \div\left(6.5 \times 10^{-2}\right)=4.0 \times 10^{6}$
8. Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers.
(a) 4.034×10^{5}
(b) 3.114×10^{-6}
(c) 26.022×10^{2}
$\frac{-2.12 \times 10^{4}}{3.822 \times 10^{5}}$
$+2.301 \times 10^{-5}$
2.612×10^{-5}
$\frac{+7.04 \times 10^{-1}}{2609.9}$
2.6099×10^{3}
9. Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers.
(a) 2.115×10^{8}
(b) 9.332×10^{-3}
(c) 68.166×10^{2}
-1.11×10^{7}
1.0022×10^{-3}
$6 . \begin{array}{r}+\quad \times 10^{-1} \\ \hline .1867 \times 10^{3}\end{array}$
10. Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.
(a) $\left(10^{-4}\right)^{3}$
(b) $\left(4 \times 10^{5}\right)^{3}$
(c) $\left(7 \times 10^{9}\right)^{2}$
4.9×10^{19}
d. $\left(10^{2}\right)^{2} \times(2 \times 10)^{3} 7$
1.0×10^{-12}
6.4×10^{16}

11. Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.
(a) $\left(6.4 \times 10^{-6}+2.0 \times 10^{-7}\right) \div\left(2 \times 10^{6}+3.1 \times 10^{7}\right)=2.0 \times 1 \mathrm{O}^{-13}$
(b) $\frac{3.4 \times 10^{-17} \times 1.5 \times 10^{4}}{1.5 \times 10^{-4}}=3.4 \times 10^{-9}$
(c) $\left(2 \times 10^{3}\right)^{3} \times\left[\left(6.84 \times 10^{3}\right) \div\left(3.42 \times 10^{3}\right)\right]=1.6 \times 10^{10}$
(d) $\frac{\left(3 \times 10^{2}\right)^{3}+\left(4 \times 10^{3}\right)^{2}}{1 \times 10^{4}}=7 \times 10^{2}$
