Final Exam

BOOK 3:

- RELATIONS & FUNCTIONS
- SLOPE & LINEAR EQUATIONS
- SYSTEMS & ARITHMETIC SEQUENCES

NAME: _______________ BLOCK: _______
Study Checklist

This review booklet is by no means a "practice final". It is a collection of practice questions on each unit, meant to guide your final exam studying and prepare you for the types of questions you will see. DO NOT treat this booklet as a practice test. DO NOT go straight to the answer key when you come across a question you cannot remember how to do. Difficult questions SHOULD guide your study! Always look up a concept in your class notes if you are stuck, then attempt the question again.

BEFORE beginning this booklet you should:

- read through your class notes booklet on *each topic*
- make your own "quick summary page" of important formulas & key concepts for the unit
- review quizzes & tests from the unit to recall strengths & weaknesses *(a great study method would be to re-do old quizzes & tests on a separate piece of paper)*

WHILE working through this booklet you should:

- look up concepts & example problems in your class notes when you come across a problem you are stuck on
- make a list of "questions to ask my teacher" so you can come to class and use your time efficiently.

Questions I'm having difficulty with:

<table>
<thead>
<tr>
<th>Page</th>
<th>Question Number #</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 5: Relations and Functions Multiple Choice

1. Marbles are placed in a jar one at a time. Which graph below best represents the total mass of the jar and marbles as the marbles are added?

A.

B.

C.

D.

2. What does the slope represent in the graph below?

A. price per ticket
B. profit from tickets
C. revenue from tickets
D. number of tickets sold
3. The cost \(C \), in dollars, to rent a car is determined by the formula \(C(k) = 0.15k + 22 \), where \(k \) is the number of kilometres driven. Calculate the value of \(k \) if \(C(k) = 166 \). Answer to the nearest kilometre.

4. Damien has a list of 37 potential customers for his house-painting business. In order to get a business grant, he must graph his income versus the number of customers. Determine the domain of the graph.
 A. \(\{0, 1, 2, 3, \ldots \} \)
 B. \(\{0, 1, 2, 3, \ldots 37\} \)
 C. all real numbers
 D. all real numbers between 0 and 37

5. Given the graph of \(y = g(t) \) below, determine the value of \(t \) for which \(g(t) = -3 \). Answer as an integer.
6. What is the range of the graph below?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>All x values between 2 and 6 inclusive.</td>
</tr>
<tr>
<td>II.</td>
<td>(2, 6)</td>
</tr>
<tr>
<td>III.</td>
<td>[1, 5]</td>
</tr>
<tr>
<td>IV.</td>
<td>$1 \leq y \leq 5$</td>
</tr>
</tbody>
</table>

A. III only
B. IV only
C. I and II only
D. III and IV only

7. Which ordered pair represents $f(3) = -5$?

A. $(-5, 3)$
B. $(-3, 5)$
C. $(3, -5)$
D. $(5, -3)$

8. The cost C, in dollars, of renting a hall for the prom is given by the formula $C(n) = 500 + 4n$, where n is the number of students attending the prom. Calculate the cost of renting the hall if 70 students attend.

A. 108
B. 500
C. 780
D. 970
9. Determine the domain of the relation graphed below.

A. \((-4, 2]\)
B. \([-4, 2)\)
C. \([-1, 5)\)
D. \([-1, 5]\)

10. Which of the following scenarios is not linear?

A. the height of a football thrown over time
B. the total weight of a jar of pennies as more pennies are added
C. the distance travelled by a car moving at a constant speed over time
D. the pay of a truck driver who earns $2500 a month, plus $0.50 for every kilometre he drives

11. Determine the range of the linear relation graphed below.

A. \(y \leq -4\)
B. \(y \leq 2\)
C. \(y \geq -4\)
D. \(y \geq 2\)
12. The graph below models a bicycle’s distance from a bike shop over time.

Calculate the change in the speed of the bike from segment P to segment Q.

A. decreased by 15 km/h
B. decreased by 5 km/h
C. increased by 15 km/h
D. increased by 11 km/h

13. Use the graph below to answer question 13.

13. What is the cost of hiring an electrician for 8 hours?

A. $550
B. $475
C. $400
D. $275
14. Which of the following relations are also functions?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>{(0, 2), (1, 4), (3, 6), (4, 5), (4, 3), (7, -8)}</td>
</tr>
<tr>
<td>II.</td>
<td>(y = 2x + 5)</td>
</tr>
<tr>
<td>III.</td>
<td>The output is 6 more than half the input.</td>
</tr>
<tr>
<td>IV.</td>
<td></td>
</tr>
</tbody>
</table>

A. I only
B. I and IV only
C. II and III only
D. II, III and IV only

15. Jim delivers newspapers. He gets paid 10 dollars for every day of work, plus 5 cents for every paper he delivers. Which of the following graphs best represents Jim’s possible income for one day?

A.
B.
C.
D.

A.
B.
C.
D.

Income ($)
Number of papers
Income ($)
Number of papers
Income ($)
Number of papers
Income ($)
Number of papers
16. The cost to insure jewellery is a fixed amount plus a percentage of the value of the jewellery. It costs $32 to insure $1000 worth of jewellery or $44.50 to insure $3500 worth of jewellery. What is the fixed amount to insure jewellery?

A. $27.00
B. $31.25
C. $44.65
D. $58.82
UNIT 5: Relations and Functions Written Response

1. Determine the domain and range of the relation.
 a) \((-1, 4), (-2, 4), (-3, 4)\)
 Domain: __________
 Range: __________
 b) \((4, -1), (4, -2), (4, -3)\)
 Domain: __________
 Range: __________

2. Write the mapping diagram in ordered pair notation.
 a) \(\begin{array}{cc}
 1 & 2 \\
 2 & 0 \\
 3 & 1 \\
 \end{array} \) \(\begin{array}{cc}
 (,) \\
 (,) \\
 (,) \\
 \end{array} \)
 b) \(\begin{array}{cc}
 1 & 2 \\
 2 & 0 \\
 3 & 0 \\
 \end{array} \) \(\begin{array}{cc}
 (,) \\
 (,) \\
 (,) \\
 \end{array} \)

3. Draw a mapping diagram for the ordered pair.
 a) \((1, 2), (1, -2), (1, 0)\)
 b) \((2, 1), (-2, 1), (0, 1)\)

4. Determine the domain and range in set notation.
 a) \[
 \begin{array}{c}
 \text{Domain: } \{-3, -2, 0, 1\} \\
 \text{Range: } \{-5, -1, 5\}
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 \text{Domain: } \{-2, 0\} \\
 \text{Range: } \{-3, -1, 3, 1\}
 \end{array}
 \]
5. Are the sets of ordered pairs functions?
 a) (2, 4), (2, 3), (2, 2) y / n
 b) (4, 2), (3, 2), (2, 2) y / n
 c) (2, 4), (4, 2), (1, 3), (3, 1) y / n

6. Apply the vertical line test to determine if the relation is a function.
 a) y / n
 b) y / n

7. The table below defines a function.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>2</th>
<th>0</th>
<th>−2</th>
<th>−4</th>
<th>−6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>−6</td>
<td>−4</td>
<td>−2</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

 a) Express this function using mapping notation.

 b) Express this function using ordered pair notation.

 c) Graph this function.
8. Graph the linear equations, and determine which are functions.

a) \[3x + \frac{1}{2}y = 3 \]

b) \[2x - 4y = -7 \]

9. A tool rental store charges $20.00, plus $5.00 per hour, to rent a rototiller.

a) Write a linear equation describing the relationship between the rental cost and the number of hours the rototiller is used.

b) Graph this relationship.

c) Determine the cost of renting the rototiller for 2.5 hours.

d) If the cost was $37.50, how many hours was the rototiller used for?
10. Graph the non-linear equation, and determine if the relation is also a function by the vertical line test.

a) $x = y^1$

b) $x = y^2 - 4$

c) $y = x^2$

d) $y = x^{1/2}$
11. For $f(x) = -3x - 2$, find:

a) $f(3)$

b) $f(-8)$

c) $f(x) = 3$

d) $f(x) = -4$

e) $f(a)$

f) $f(x) = a$

g) $f(x + h)$

h) $f(x) + f(h)$
UNIT 6: Slope & Linear Relations Multiple Choice

1. Which graph represents the relation $x - 5y + 10 = 0$?

A.

![Graph A](image)

B.

![Graph B](image)

C.

![Graph C](image)

D.

![Graph D](image)

2. The line $y = \frac{1}{2}(x - 5)$ passes through which point on the graph?

A. A
B. B
C. C
D. D
3. Use a ruler to determine the slope of the roof shown below.

Note: This diagram is drawn to scale.

4. Calculate the slope between the points \((7, -3)\) and \((4, 3)\).

 A. \(-2\)

 B. \(-\frac{1}{2}\)

 C. 2

 D. 10

5. A line with an undefined slope passes through the points \((-2, 1)\) and \((p, q)\). Which of the following points could be \((p, q)\)?

 A. \((1, 0)\)

 B. \((0, 1)\)

 C. \((0, -2)\)

 D. \((-2, 0)\)
6. Determine the slope of the linear relation $3x + 5y + 15 = 0$.

A. $\frac{5}{3}$

B. $\frac{3}{5}$

C. $-\frac{3}{5}$

D. $-\frac{5}{3}$

7. Determine the slope-intercept equation of the line that is parallel to $y = \frac{2}{5}x - 3$ and passes through the point $(0, 5)$.

A. $y = -\frac{5}{2}x - 3$

B. $y = -\frac{5}{2}x + 5$

C. $y = \frac{2}{5}x + 3$

D. $y = \frac{2}{5}x + 5$

8. Lines A and B are perpendicular and have the same x-intercept. The equation of line A is $x + 2y - 4 = 0$. Determine the y-intercept of line B.

A. -8

B. -2

C. 4

D. 8
9. A line has a slope of \(\frac{2}{3} \) and passes through the point \((6, 0)\). Which of the following points must also be on the line?

A. \((-3, -6)\)
B. \((3, 8)\)
C. \((4, -3)\)
D. \((9, 3)\)

10. Rewrite \(y = \frac{x}{5} - 6 \) in general form.

A. \(\frac{x}{5} - y - 6 = 0 \)
B. \(x + 5y - 6 = 0 \)
C. \(x - 5y - 30 = 0 \)
D. \(5x - 5y - 30 = 0 \)

11. Given the equation \(Ax + By + C = 0 \), which of the following conditions must be true for the graph of the line to have a positive slope and a positive y-intercept?

A. \(A > 0, \ B > 0, \ C > 0 \)
B. \(A > 0, \ B < 0, \ C > 0 \)
C. \(A > 0, \ B > 0, \ C < 0 \)
D. \(A > 0, \ B < 0, \ C < 0 \)
12. Which of the following graphs represents a line that passes through \((6, 4)\) and is perpendicular to \(y = -\frac{2}{3}x\)?

A.

B.

C.

D.

13. Determine the slope-intercept form of the line that passes through the point \((-4, 3)\) and is parallel to the line segment that joins \(A(-1, -5)\) and \(B(-3, 1)\).

A. \(y = -3x - 9\)
B. \(y = -3x + 5\)
C. \(y = -3x + 15\)
D. \(y = 3x + 15\)
14. Which of the following statements are true for $2x + 3y = 6$?

I.	The y-intercept is -2.
II.	The line is parallel to $y = 2x$.
III.	The slope-intercept form of the line is $y = \frac{2}{3}x + 2$.
IV.	The range is all real numbers.

A. IV only
B. I and II only
C. I and IV only
D. III and IV only

15. A hot-dog stand owner makes a profit of $100 when he sells 90 hot dogs a day. He has a loss of $30 when he sells 25 hot dogs a day. Which linear relation represents his profit?

A. $y = 0.5x + 55$
B. $y = 1.08x + 3.08$
C. $y = 1.11x$
D. $y = 2x - 80$

16. Use the following graph to answer question 16

![Graph of Amount of Gasoline Remaining vs. Distance Driven]

The graph above shows the relationship between the amount of gasoline remaining in a 50 L tank and the distance driven for a certain car.

What does the x-intercept represent in this situation?

A. fuel capacity of the gasoline tank
B. total distance travelled during a long trip
C. total distance driven until the car is out of gas
D. number of kilometres driven per litre of gasoline

2 / 2
17. The slope of AB is $-\frac{2}{3}$. The slope of CD is $\frac{w}{24}$. Given $AB \parallel CD$, determine the value of w. Answer as an integer.

18. Determine the equation of a line, in slope-intercept form, that passes through the points $(6, 1)$ and $(-10, 9)$.

A. $y = -\frac{1}{2}x + 4$
B. $y = -\frac{1}{2}x - 2$
C. $y = -2x + 8$
D. $y = -2x + 13$

19. Which of the following lines have a negative slope?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>$y + 3 = 0$</td>
</tr>
<tr>
<td>II.</td>
<td>$2x + y = 6$</td>
</tr>
<tr>
<td>III.</td>
<td>$(y + 2) = -4(x - 5)$</td>
</tr>
</tbody>
</table>

A. II only
B. III only
C. I and III only
D. II and III only
20. A waterslide descends 20 m over a horizontal distance of 50 m. What is the slope of the waterslide? Answer, with a positive value, to the nearest tenth.

21. In which quadrant do the graphs of \(x = -7 \) and \(y = 2x + 1 \) intersect?

 A. Quadrant I
 B. Quadrant II
 C. Quadrant III
 D. Quadrant IV
22. Which of the following coordinates are intercepts of the linear relation \(2x - 3y + 30 = 0\)?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>(0, 10)</td>
</tr>
<tr>
<td>II.</td>
<td>(\left(0, \frac{2}{3}\right))</td>
</tr>
<tr>
<td>III.</td>
<td>(-10, 0)</td>
</tr>
<tr>
<td>IV.</td>
<td>(-15, 0)</td>
</tr>
</tbody>
</table>

A. I only
B. I and IV only
C. II and III only
D. II and IV only

Use the following graph to answer question 23

![Graph](image)

23. Which of the following equations describes the linear relation graphed above?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>(y = \frac{4}{3}x + 4)</td>
</tr>
<tr>
<td>II.</td>
<td>(y - 8 = -\frac{4}{3}(x + 3))</td>
</tr>
<tr>
<td>III.</td>
<td>(4x + 3y - 12 = 0)</td>
</tr>
</tbody>
</table>

A. II only
B. I and II only
C. I and III only
D. II and III only
24. Kelly explained her method for graphing the linear relation \(y = -\frac{2}{3}x + 7 \) as follows:

<table>
<thead>
<tr>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Place a dot on the y-axis at positive 7.</td>
</tr>
<tr>
<td>II. Move up two on the y-axis to positive 9.</td>
</tr>
<tr>
<td>III. From the positive 9, move to the left three spots and place a dot there.</td>
</tr>
<tr>
<td>IV. Draw a line through the two dots.</td>
</tr>
</tbody>
</table>

Where did Kelly make the first mistake in her explanation?

A. Step I
B. Step II
C. Step III
D. There is no mistake.

25. Which of the following relations could be produced by \(y = \frac{2}{5}x - 6 \)?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>2x - 5y - 30 = 0</td>
</tr>
<tr>
<td>II.</td>
<td>{ (15, 0), (10, -2), (-5, -8), (-10, -10) }</td>
</tr>
<tr>
<td>III.</td>
<td></td>
</tr>
</tbody>
</table>

A. I only
B. II only
C. I and II only
D. I, II and III
UNIT 6: Slope & Linear Relations Written Response

1. Find the slope of the line containing each pair of points.

 a) \((-2, 5)\) and \((4, -3)\)
 b) \((6, -2)\) and \((-4, -3)\)
 c) \((3, 1)\) and \((-4, 6)\)
 d) \((a, -b)\) and \((-b, a)\)
 e) \((-3, 0)\) and \((-3, 4)\)
 f) \((4, -1)\) and \((-2, -1)\)

2. Determine the slope.

 a)

 b)

 ![Graph A](image1)

 ![Graph B](image2)
3. Determine the rate of change.

 a) Car Repairs

 ![Graph of Car Repairs]

 b) Weight Loss

 ![Graph of Weight Loss]

4. George rents a motor scooter for three hours to travel around Crescent Beach. It cost him $36.00 for travelling 42 km.

 a) Determine George’s average speed in km/h.

5. Marelee rented a stall at a craft market for four hours at a cost of $120. She sold $600 worth of pottery.

 a) Determine her rental cost per hour.

 b) Determine the rental rate in dollars per hour.

 b) Determine her average sales per hour.

 c) Determine the rental rate in cents per km.

 c) Determine her average profit per hour.
6. Determine the slope.

7. Find the number \(n \), so that the line passing through the point \((-3, 5)\) and \((-4, n)\) has slope 3.

8. The line through the point \((8, y)\) and \((2, -3)\) has a slope parallel to a line with \(x \)-intercept 3 and \(y \)-intercept \(-1\). Determine \(y \).
9. Find the value of c so that the line through the points $(-2, -4)$ and $(-1, -1)$ is parallel to the line through the points $(6, -2)$ and $(3, c)$.

10. Find the value of c so that the line through the points $(6, -2)$ and $(3, c)$ is perpendicular to the line through the points $(−2, −4)$ and $(−1, −1)$.

11. Find the value of c so that the line through the points $(0, 3)$ and $(-1, 0)$ is parallel to the line through the points $(c, 1)$ and $(-2, 3)$.

12. Find the value of c so that the line through the points $(0, 3)$ and $(-1, 0)$ is perpendicular to the line through the points $(c, 1)$ and $(-2, 3)$.

12. Find the slope and y-intercept.

 a) $2x - 5y = 7$ (slope ______)

 b) $5x + y = -2$ (slope ______)

 y-intercept _______ y-intercept _______

13. Write the equation in slope-intercept form.

 a) $6x - y = 3$

 b) $2x + 5y = 7$
14. Write the slope-intercept equation in general form.

a) \(y = -\frac{2}{3}x + 4 \)

b) \(y = -3x + \frac{2}{5} \)

15. Write the point-slope equation in slope-intercept form.

a) \(y + 1 = -\frac{2}{3}(x - 4) \)

b) \(y - \frac{2}{3} = -4\left(x + \frac{1}{2}\right) \)

16. Write the point-slope equation in general form.

a) \(y + 1 = -\frac{2}{3}(x - 4) \)

b) \(y - \frac{2}{3} = -4\left(x + \frac{1}{2}\right) \)

17. Write the equation of each line in general form.

a) \((0, -3), \ m = -4\)

b) \((2, 0), \ m = -\frac{1}{3}\)
18. Determine the equation in: general form, slope-intercept form and point-slope form.

a) ![Graph](image1)
 - General form:
 - Slope-intercept form:
 - Point-slope form:

b) ![Graph](image2)
 - General form:
 - Slope-intercept form:
 - Point-slope form:

19. Determine the equation of the graph.

a) ![Graph](image3)

b) ![Graph](image4)

20. Write the equation of the line with the given characteristics.

 a) Vertical, passes through \((-2, 5)\)
 b) Horizontal, passes through \((-2, 5)\)
 c) Vertical, passes through \((a, b)\)
 d) Horizontal, passes through \((a, b)\)
21. For each pair of equations, determine whether the lines are parallel, perpendicular or neither parallel nor perpendicular.

a) \[3x + 2y = 7 \]
\[4x + 6y = 2 \]

b) \[5x - 2y = 4 \]
\[4x + 10y = 3 \]

c) \[y = 2x - 3 \]
\[2x + y = -3 \]

d) \[3x - y = 2 \]
\[6x - 2y = 2 \]

22. Write the equation of the line passing through the given set of points in general form.

a) \((-3, 1)\) and \((-4, -6)\)

b) \((-2, -3)\) and \((-5, -1)\)
23. Find the slopes of lines parallel and perpendicular to the following equations.

a) \(3x - 4y = -6\) \(m_{\parallel} \quad \) b) \(x = 3y + 2\) \(m_{\parallel} \quad \)

\(m_{\perp} \quad \) \(m_{\perp} \quad \)

24. Find the equation of the line that passes through the given point and is parallel to the given line. in general form

a) \(P(-2, 4); \ 2x - 3y = 5\) b) \(P(4, -1); \ 4x + 7y = -2\)

25. Find the equation of the line that passes through the given point and is perpendicular to the given line in slope-intercept form.

a) \(P(-2, 4); \ 2x - 3y = 5\) b) \(P(4, -1); \ 4x + 7y = -2\)
26. Determine the equation of a line, in general form which is parallel to the line and which goes through the given point.

 a) \((5, 2)\)

 b) \((-3, 4)\)

27. Determine the equation of a line, in general form which is perpendicular to the line and which goes through the given point.

 a) \((5, 2)\)

 b) \((-3, 4)\)
UNIT 7: SYSTEMS OF EQUATIONS
MY NOTES AND THINGS TO REMEMBER...
UNIT 7: Systems of Linear Equations Multiple Choice

1. Solve for \(y \) in the following system of equations:

\[
\begin{align*}
2x - y &= -1 \\
3x + 5y &= 21
\end{align*}
\]

A. 2
B. 3
C. 9
D. 12

2. Which of the following systems of linear equations has a solution of \((-3, 4)\)?

A. \[
\begin{align*}
2x - 3y &= 6 \\
y &= 3x - 13
\end{align*}
\]

B. \[
\begin{align*}
2x - 3y &= 6 \\
y &= 3x + 13
\end{align*}
\]

C. \[
\begin{align*}
2x + 3y &= 6 \\
y &= 3x - 13
\end{align*}
\]

D. \[
\begin{align*}
2x + 3y &= 6 \\
y &= 3x + 13
\end{align*}
\]
3. Two planes have a cruising speed of 570 km/h without wind. The first plane flies for 12 hours against a constant headwind. The second plane flies for 10 hours in the opposite direction with the same wind (a tailwind). The second plane flies 370 km less than the first plane.

Determine two equations that could be used to solve for the wind speed, \(w \), and the distance travelled by the first plane, \(d \).

A. \((570 - w)(12) = d\)
\((570 + w)(10) = d - 370\)

B. \((570 - w)(12) = d\)
\((570 + w)(10) = d + 370\)

C. \((570 + w)(12) = d\)
\((570 - w)(10) = d - 370\)

D. \((570 + w)(12) = d\)
\((570 - w)(10) = d + 370\)

4. How many solutions does this system of equations have?

\[
\begin{align*}
y &= 3x + 7 \\
y &= 3x - 4
\end{align*}
\]

A. no solution
B. one solution
C. an infinite number of solutions
D. cannot be determined without solving

5. Solve for \(x \):

\[
\begin{align*}
3x + 4y &= -16 \\
x &= 4y
\end{align*}
\]

7. Joey bought 8 books. Some books cost $12 each the rest cost $18 each. He spent a total of $108. Which of the following systems of linear equations could represent the given situation?

A. \[\begin{align*}
 x + y &= 8 \\
 12x + 18y &= 108
\end{align*} \]

B. \[\begin{align*}
 x + y &= 108 \\
 12x + 18y &= 8
\end{align*} \]

C. \[\begin{align*}
 x + 12y &= 8 \\
 x + 18y &= 108
\end{align*} \]

D. \[\begin{align*}
 12x + y &= 8 \\
 x + 18y &= 108
\end{align*} \]
8. Kim invested a total of $1500 between two bonds. One bond earned 8% per annum and the other bond earned 10% per annum. In one year, Kim earned $132 on her investments. How much did she invest in the bond that earned 10%?

A. $600
B. $750
C. $900
D. $1000
UNIT 7: Systems of Linear Equations Written Response

1. Solve by graphing.

 a) \[3x - 2y = 10\]
 \[-x + 4y = -12\]

 b) \[y + x = -2\]
 \[3x - y = -4\]

 c) \[5x + 4y = 12\]
 \[3x - 4y = 20\]

 d) \[3x + 9y = 18\]
 \[2x + 6y = -24\]

2. The solution of the system \[\begin{align*}
 A x - 5y &= 2 \\
 -A x + B y &= -8
\end{align*}\] is \((-4, 2)\). Find \(A\) and \(B\).
3. Solve by the elimination method.

a) \[3x + y = 6\]
 \[3x + 2y = 3\]

b) \[3x - y = -7\]
 \[2x + 3y = 10\]

c) \[2x - 3y = -4\]
 \[-4x + 6y = -4\]

d) \[0.2x + 0.3y = 0\]
 \[3x - 2y = \frac{13}{2}\]
e) \[\frac{4}{5}x + \frac{3}{5}y = 1 \]
\[\frac{3}{8}x - \frac{1}{4}y = 1 \]

f) \[3x - 4y = 6 \]
\[2(2y + 3) = 3x \]

g) \[x - 2y = 16 \]
\[y + 3 = 3x \]

h) \[1.5x - 0.2y = 14 \]
\[0.4x + 17y = 89 \]
4. Solve by the substitution method.

a) \[y = 2x + 7 \]
\[x + 2y = -6 \]

b) \[2x = 3y - 13 \]
\[-y = -2x - 7 \]

c) \[6x - 3y = 4 \]
\[y + 2x = 0 \]

d) \[6x = 3y + 12 \]
\[4 = 2x - y \]
e) \[2x - 3y = x - y\]
\[-2x + 4y = 6\]

f) \[4x = \frac{1}{2}y - 2\]
\[\frac{1}{6}y = 8x - 1\]

g) \[y = \frac{x}{3} + \frac{5}{6}\]
\[\frac{3x}{2} - \frac{y}{4} = -\frac{11}{12}\]

h) \[2x + y = a\]
\[x - 2y = b\]
5. Jerry has 150 m of fencing to enclose a rectangular chicken pen. If the length of the pen is 15 m less than twice the width, find the area of the chicken pen.

6. Trudene invests part of her savings of $150,000 in mutual funds that average 8% interest annually. The remainder is invested in bonds that average 7% interest annually. The combined interest earned the first year is $11,500. How much money was invested in each account?

7. A boat travelled 60 km downstream in four hours and made the return trip in five hours. Find the speed of the boat in still water.
8. The perimeter of a basketball court is 288 ft, and the length of the court is 44 ft longer than its width. What are the dimensions of a basketball court?

9. The sum of the digits of a two-digit number is 12. The number formed by reversing the digits is 36 more than the original number. Find the original number.

Arithmetic Sequence:
for additional practice with arithmetic sequence, complete your FULL Unit & Assignment #6 HW (we only did odd questions)

1. Determine the 25th term of the arithmetic sequence
 \[-2, -8, -14, -20, \ldots\]

2. Determine the number of terms in the arithmetic sequence
 \[5, 1, -3, \ldots, -111\].

3. An auditorium has eight seats in the first row. Each subsequent row has four more seats than the previous row. How many seats are in the 28th row?