Exponents: Integral & Rational

Term	Definition	Example
Power	21, 22, 23, 24, are powers of 2.	
	A power is made up of a base and an exponent.	
Exponent	The smaller number written to the upper right of the base that tells you how many times to multiply the	$2^4 = 2 \times 2 \times 2 \times 2$
	base by itself.	4 is the exponent.
Base	The "larger" number that the exponent is applied to. (The bottom number in a power)	$2^4 = 2 \times 2 \times 2 \times 2$
	(Me sorion names in a poner)	2 is the base.
Rational number	Numbers that can be written as fractions.	
Rational Exponent	The exponent on a power is a rational number (fraction). $x^{\frac{2}{3}}=\left(\sqrt[3]{x}\right)^{2}$	$27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = (3)^2 = 9$
Integral number	An integer {3,-2,-1,0,1,2,3,}.	
Integral Exponent	The exponent on a power is an integer.	Such as x^2, x^{-3} .
Coefficient	The numbers in front of the letters in mathematical expressions.	In $3x^2$, 3 is the coefficient.
Variable	The letters in mathematical expressions.	In $3x^2$,'x' is the variable.
Undefined	If there is no good way to describe something, we say	$\frac{3}{0}$ is undefined because we cannot
	it is undefined.	divide by zero.
Radical form	$\left(\sqrt[3]{8}\right)^2$ is in radical form.	
Exponential Form	$8^{\frac{2}{3}}$ is in exponential form.	
Zero Exponent	Any expression to the power of 0 will equal 1.	$(2xyz)^0 = 1$
Negative Exponent	Reciprocate the base and perform repeated	$5^{-3} = \left(\frac{1}{5}\right)^3 = \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} = \frac{1}{125}$
	multiplication OR use repeated division.	$m^5 \times m^2 = m^7$
Multiply Powers with the Same base	Add the exponents.	$m^{\circ} \times m^{\varepsilon} = m'$
Dividing Powers with the same base.	Subtract the exponents.	$q^6 \div q^4 = q^2$
Power of a Power	Multiply the exponents.	$(x^2)^4 = x^8$
Power of a Product	Apply the exponent to all factors.	$(3x^2)^3 = 27x^6$
Power of a Quotient	Apply the exponent to both numerator AND	$\left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$
	denominator	$\left(\frac{1}{b}\right) = \frac{1}{b^3}$

P a g e 3 | Exponents

Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

Example: Evaluate or simplify the following expressions.

1.
$$3^2 = 3 \cdot 3 = 9$$

$$3. -3^{2} = -[(3) \cdot (3)] = -[9] = -9$$

$$5\sqrt{\frac{6^{-2}}{5}}$$
 Feip = $\frac{1}{6^2}$ = $\frac{1}{36}$

6.
$$-\frac{1}{2}$$
 = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{16}$

6.
$$-\frac{1}{2}$$
 = $-\frac{1}{2^{4}}$ = $-\frac{1}{16}$

7. $\frac{1}{(-2)^{-4}}$ = $\frac{1}{(-2)^{4}}$ = $\frac{1}{(-2)\cdot(2)\cdot(2)}$ = $\frac{1}{(-2)\cdot(2)\cdot(2)}$ * even exponent. means \oplus answer.

8.
$$x^3 \cdot x^4 = \chi^{5+4} = \chi^7$$

9.
$$x^{3} \cdot x^{\frac{1}{4}} = \chi$$

Multiply

 $x^{3} \cdot x^{\frac{1}{4}} = \chi$
 $x^{3} \cdot x^{\frac{1}{4}} = \chi$

$$12 \div 3 = 4$$
 coefficient
 $m^4 \cdot m^1 \div m^{-2}$

FMPC 10 Updated June 2018

Introduction to Exponents

Challenge #1: Solve each riddle using any strategy that works.

1. Evaluate. 3 ² × 3 ²	2. Evaluate,	3. Evaluate.	4. Evaluate.
	2 ² × 2 ² + 2 ³		8x ⁴ + 4x ³
Rate the riddle:	Rate the riddle:	Rate the riddle:	Rate the riddle:
Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard

Rate the riddle: Easy, Medium, Hard	Rate the riddle: Easy, Medium, Hard	Rate the riddle: Easy, Medium, Hard	Rate the riddle: Easy, Medium, Hard	
	y that is different from ed in Question 1 and tion again.		that is different from d in Question 4 and on again.	
Page 4 Exponents	Copyright Mat	hbeacon.com. Use with permission	h. Do not use after June 2019	

FMPC 10 Updated June 2018

What is an Exponent?

Exponents are symbols that indicate an operation to be performed on the base.

positive exponents \rightarrow Repeated Multiplication negative exponents > Repeated Division

 \boldsymbol{b} is the base, and \boldsymbol{e} is the exponent. Together, we call them a *power*.

Some examples...

 $2^1, 2^2, 2^3, 2^4, 2^5$ are the first five **powers of 2**. x^1, x^2, x^3, x^4, x^5 are the first five **powers of x**.

All organisms begin as one cell and then through a process called mitosis the single cell splits into two, then each of those split into two, etc. Eventually, these cells together form a multi-celled organism with trillions of cells.

** Guess the next few numbers

When numbers are written in a form such as 23 it is called a _____, the "2" is the

the number of times the base is multiplied by itself.

a×	a is the base, \times is the exponent and \mathbf{a}^{\times} is the power.
5 ²	Is read 5 to the exponent 2 and equals 5×5 as a repeated multiplication and evaluates to 25.
2 ⁵	Is read 2 to the exponent 5 and equals 2×2×2×2×2 as a repeated multiplication and evaluates to 32.

P a g e 5 | Exponents

Copyright Mathbeacon.com. Use with permission. Do not use after June $2019\,$

FMPC 10 Updated June 2018

Positive Integral Exponent (multiplication)	Zero Exponent	Negative Integral Exponent (repeated division)	
$a^n = 1 \times a \times a \times a \times \times a$ (n factors)	$a^0=1,\ (a\neq 0)$	$a^{-n} = 1 \div a^n$	
Eq. $3^4 = 1 \times 3 \times 3 \times 3 \times 3 = 81$	Eg. $5^0 = 1$, $\left(\frac{3}{2}\right)^0 = 1$	$=\frac{1}{a^{\pi}}$	
Eg. 3' = 1 x 3 x 3 x 3 x 3 = 81	- (6)	Eg. $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$	

Challenge #2
7. Evaluate each of the following and examine the pattern:

 $2^4 =$

 $2^{3} =$

 $2^2 =$

 $2^1 =$

 $2^{0} =$

 $2^{-1} =$

 $2^{-2} =$

 $2^{-3} =$

 $2^{-4} =$

- 8. What patterns do you notice in the list you created to
- 9. Does the value of $2^{\rm 0}$ make sense when put into this list?
- 10. Do negative exponents make sense in this list?
- 11. Why might people say negative exponents mean "repeated division?"

Page 6 | Exponents

Copyright Mathbeacon.com. Use with permission. Do not use after June $20\,19$

FMPC 10 Updated June 2018

12. Identify the base in the following equation. $4^3 = 64$	13. Identify the power in the following equation. $2^5=32 \label{eq:25}$	14. Identify the exponent in the following equation. $-3^2 = -9$
15. Which of the following is equivalent to —16?	16. Which of the following is equivalent to -81?	17. Which of the following are equivalent to 1.
-4^{2} $(-4)^{2}$ 4^{-2} -4^{-2}	-9^{2} $(-3)^{4}$ 9^{-2} -3^{-4}	$-3^0 \frac{2x^3}{2x^3} (5x)^0$
18. Which of the following is equivalent to 9? -3² (-3)² 3-² (-3)-²	19. Evaluate. -2^{6} $= -1 \times 2 \times $	20. Evaluate. (-3)³
2142	22. (-4)-2	23. —4 ⁻²
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25. (-3) ⁻⁴	263 ⁻⁴
27. 42	28. (-4)²	29(4)2

Page **7 | Exponents** Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

FMPC 10		Updated June 2018
30. 5 ⁰ 31.	-5 ⁰ 32. ($\left(\frac{34a^2}{3a}\right)^0$
	Exponent Laws:	
Challenge #3 33. Multiply.	Combain come atoms	
$a^3 \times a^6$	Explain your steps.	
Challenge #4		
34. Divide. $g^7 \div g^3$	Explain your steps.	
Challenge #5		
35. Multiply, $5m^4 \times 3m^2$	Explain your steps.	

FMPC 10 Updated June 2018

Simplify the following write your answers using exponents.

Simplify the following, write your answers using exponents.					
$ 36. \ a^3 \times a^6 \\ = a^{3+6} \\ = a^9 $	37. $a^2 \times a^{-4}$	38. $f^2 \times f^x$			
$39. \ x^{\frac{1}{4}} \times x^{\frac{6}{6}}$	40. 2 ³ × 2 ⁻⁵	41. $g^7 + g^3$ = g^{7-3} = g^4			
42. $m^4 \div m^0$	43. $t^0 \div t^{-5}$	44. $\frac{x^{13}}{x^3}$			
$45. 5m^4 \times 3m^2 = 5 \times 3 \times m^{4+2} = 15m^6$	$46. \ \ -10x^4 \div -2x^{-2}$	47. 4a* -8a ²			
48. $\frac{2}{3}x^3 \times \frac{6}{5}x^4$	$49. \ \frac{2}{a^3} \div \frac{6}{a^6}$	50. Evaluate. $ \left(\frac{2}{3}\right)^3 \left(\frac{-6}{4}\right)^2 $			

Multiplying	Powers	with	the	same	Base:
Add the expo	nents				

Dividing Powers with the same Base: Subtract the exponents.

Eg.
$$x^5 \times x^2 = x^{5+2} = x^7$$

Eg.
$$d^4 \div d^3 = d^{4-3} = d^1 = d$$

$$a^{\frac{2}{3}} \times a^{\frac{1}{3}} = a^{\frac{3}{3}} = a^1 = a$$

$$\frac{y^6}{y^{-2}} = y^{6-(-2)} = y^8$$

 $3x^2 \times 2x^5 = 3 \times 2 \times x^2 \times x^5 = 6x^7$

P a g e 9 | Exponents

Copyright Mathbeacon.com. Use with permission. Do not use after June $2019\,$