Create a Factoring Flowchart.
Start with the first thing you should do....collect like terms.
Start

Identify GCF and divide all terms by the GCF GCF (Polynomial)

Decomporition(OR) Method $<=$ eg. $\left(10 \sqrt{\left.x^{2}+11 x+3\right) ~}=30\right.$

Homework
$(2 x+1)(5 x+3)$
Perfect Scare Trinomial

Factor by
Grouping

$$
a \underline{\underline{c}}+b \leqq \underline{c}+a \underline{d}+b \underline{d}
$$

$$
c(a+b)+d(a+b)
$$

$$
(a+b)(c+d)
$$

eg. $6 a b+2 b+9 a+3$ $2 b(3 a+1)+3(3 a+1)$

$$
(3 a+1)(2 b+3)
$$

ASSIGNMENT \# q
pages 49-51 Questions \#261-286

Pa g e $\mathbf{4 8} \mid$ Polynomials
Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

HIGHER DIFFICULTY..

For some of the following questions, you may try substituting a variable in the place of the brackets to factor first, and then replace brackets.

| $270 .(a+b)^{2}-c^{2}$ | $271(c-d)^{2}-(c+d)^{2}$ | $272 .(m+7)^{2}+7(m+7)+12$ |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | |

273. Factor. $(x+2)^{2}-(x-3)^{2}$	274. Find all the values of k so that $x^{2}+k x-12$ can be factored.	275. For which integral values of $k \operatorname{can} 3 x^{2}+k x-3$ be factored.
276. What value of k would make $k x^{2}+24 x y+16 y^{2}$ a perfect square trinomial?	277. What value of k would make $2 k x^{2}-24 x y+9 y^{2}$ a perfect square trinomial?	278. For which integral values of k can $6 x^{2}+k x+1$ be factored. a. 5,7 b. $\pm 5, \pm 7$ c. $-5,-7$ d. all integers from 5 to 7.
279. Expand and simplify. $-2(3 m+4)^{2}$	280. If $a=$	te $a^{2}-5 a+3$ in terms of x.

[^0]Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

[^1]Answers:

34. You cannot subtract / take away, or cancel the "negative-x" tile from the first expression because there was not one there. The same problem arises with the " +2 ".
35. Raj added "zero" in the form of opposite tiles so that he could then subtract the $(-x+2)$ from the first expression.
36. $7 \mathrm{x}-6$
37. $5 x^{2}+5 x-8$
38. $x^{2}-4 x-8$
39. Same shape.
40. Same letter, same exponent
(degree).
41. $-9 x+9 y,-45$
42. $3 \mathrm{x}^{3}-5 \mathrm{x}^{2}-6,30$
43. $11 x^{2} y^{3}-5,-797$
43. $11 x^{2} y^{3}-5,-797$
$\begin{array}{ll}\text { 44. } & 6 x+17 \\ \text { 45. } & 12 a+4 b\end{array}$
45. $12 \mathrm{a}+4 \mathrm{~b}$
46. $4 \mathrm{x}+$
47. 7a
48. $12 x-5 y$
49. $19 \mathrm{a}-3 \mathrm{~b}$
50. $13 x^{2}-x-5$
51. $-2 m^{2} n-2 m n+n$
52. $-y^{2}+2 y-4$
53. $10 x^{2}-6 x y+3 x+6$
54. A rectangle that is 3 by 3 has an area of 9 square units.
55. A rectangle that is 3 by 4 has an area of 12 square units.
56. 20
57. Colour one side differently. The (-2) could be shaded.
58. -12
59. -20
60. Both edges would be shaded to represent negatives
61. 12
62. 20
63. 252
64. $(30+2)(10+4)$
$300+120+20+8$
448
65. 408
66. 252
67. $=448$

68. $=408$

69. 345
70. 2496
71. 5329
72. $(4)(5)=20$
73. $(-3)(6)=-18$
4. $(x)(5)=5 x$
75. $(\mathrm{x})(\mathrm{x})=\mathrm{x}^{2}$
76. $(x)(-x)=-x^{2}$
76. $(x)(-x)=-x^{2}$
78. (3) $(2 x)=6 x$
79. $(-3)(2 x)=-6 x$
80. $(2)(-3 x)=-6 x$
81. $\frac{6 x}{x}=6$, length is 6 units.
82. $\frac{6 x^{2}}{3 x}=2 x$,
$\frac{3 x}{\text { length is } 2 x \text { units. }}$
83. $\frac{-6 x^{2}}{3 \mathrm{x}}=-2 \mathrm{x}$,
length is $-2 x$ units.
84. $(2 x)(x+1)=2 x^{2}+2 x$
85. $(2 x)(-x+1)=-2 x^{2}+2 x$
86. $(2 x)(x-2)=2 x^{2}-4 x$
87. $(-2 x)(x-3)=-2 x^{2}+6 x$
88.

89.

90.

91. $-x^{2}-3 x$
92. $-6 x^{2}-9 x$
93. $\frac{x^{2}+3 x}{x}$ or $\left(x^{2}+3 x\right) \div(x)$
length is $x+3$
94. $\frac{-x^{2}-3 x}{x}$ or $\left(-x^{2}-3 x\right) \div(x)$ length is $-x-3$
95. $\frac{2 x^{2}-8 x}{2 x}$ or $\left(2 x^{2}-8 x\right) \div(2 x)$ length is $x-4$
96. $2 \mathrm{x}^{2}+6 \mathrm{x}$
$x+3$
$2 x$
$6 x+18$
6
$\mathrm{x}+3$
98. $2 \mathrm{x}^{2}+3 \mathrm{x}$
$2 x+3$
x
$6 a^{2} b^{8}$
100. $-10 x^{5} y^{8}$
101. $-12 x^{4}$
102. $\frac{3}{8} \mathrm{a}^{4} \mathrm{~b}^{3}$ or $\frac{3 a^{4} b^{3}}{8}$
103. $-5 \mathrm{t}^{3}$
104. $5 \mathrm{xz}^{2}$
105. $\frac{4 x^{2}}{3 y}$
106. $-20 \mathrm{c}^{4} \mathrm{~d}^{4}$
107. $6 x^{2} y^{2}$
108. a
109. $2 x^{2}-9 x-5$
110. $2 x(x+1)=2 x^{2}+2 x$
111. $2 x(2 x+1)=4 x^{2}+2 x$
112. $2 x(x-2)=2 x^{2}-4 x$
113. $-2 x(x-3)=-2 x^{2}+6 x$
114.

$=2 x^{2}+5 x+2$
115.

116. $4-x^{2}$

See solutions guide for area model.
117. $-x^{2}+4 x-3$ See solutions guide for area model.
118. $6 x^{2}+5 x+1$

See solutions guide for area model.
119. $A=1 \mathrm{w}$
$1=\frac{A}{w}$
$\frac{x^{2}+3 x+2}{x+1}$
length: $x+2$
120. $\frac{2 x^{2}+5 x+2}{2 x+1}$
length: $x+2$
121. $\frac{4 x^{2}-8 x+3}{2 x-1}$
length: $2 x-3$
122. Area: $x^{2}+5 x+6$

Length: $x+3$
Width: $x+2$
123. $a: x^{2}+6 x+9$

Length: $x+3$
Width: $x+3$
124. Area: $2 x^{2}+7 x+6$

Length: $2 x+3$
Width: $x+2$
125. $x^{2}-2 x-3$
126. $4 x^{2}+4 x+1$
127. $x^{2}-16$
128. $x^{2}-3 x-10$
129. $2 x^{2}-5 x-3$
130. $x^{2}-6 x+9$
131. $x^{2}+4 x+4$
132. $6 x^{2}-3 x-3$
133. $4 x^{2}-1$
133. $4 x^{2}-1$
134. $x^{2}+4 x+4$
134. $x^{2}+4 x+4$
135. $4 x^{2}+20 x+25$
135. $4 x^{2}+20 x+25$
136. $x^{3}+2 x^{2}-7 x+4$
137. $x^{3}-10 x^{2}+26 x-5$
138. $6 x^{3}-5 x^{2}-4 x-3$
139. $x^{3}+6 x^{2}+12 x+8$
140. $x^{2}+2 x-2 x-4$
$(x+2)(x-2)$
$(x+2)(x-2)=x^{2}-4$
141. $x^{2}+3 x-3 x-9$
$(x+3)(x-3)$
142. $4 x^{2}+4 x-4 x-4$
$(2 x+2)(2 x-2)$
$(2 x+2)(2 x-2)=4 x^{2}-4$
143. $9 x^{2}+12 x-12 x-16$
$(3 x+4)(3 x-4)$
$(3 \mathrm{x}+4)(3 \mathrm{x}-4)=9 \mathrm{x}^{2}-16$
144. $x^{2}-9$
145. $4 x^{2}-9$
146. $9 \mathrm{x}^{2}-1$
147. $x^{2}-2 y$
148. $3 b^{2}-147$
148. $3 \mathrm{~b}^{2}-147$
150. $2 \mathrm{x}^{2}+15 \mathrm{x}+30$
150. $2 x^{2}+15 x+30$
151. $3 x^{2}-11 x-38$
152. $30 \mathrm{t}^{2}-61 \mathrm{t}+25$
152. $30 t^{2}-61 t+25$
153. $-12 y^{2}$
154. $3^{2} \times 2$
155. $3^{2} \times 2^{4}$
156. 2^{6}
157. $2^{3} \times 3=24$
158. $2^{4}=16$
159. $2 \times 3^{2}=18$
160. $5 \times 2 \times \mathrm{a} \times \mathrm{a} \times \mathrm{b}$
161. $2 \times 3 \times 3 \times a \times b \times b \times c \times c \times c$
162. $2 \times 2 \times 3 \times b \times b \times b \times c \times c$
163. 2 ab
164. $6 b^{2} \mathrm{c}^{2}$
165. 2b

Challenge: $5(\mathrm{x}+2)$
Challenge: $3 x\left(x^{2}+2 x-4\right)$
166. $5(x+5)$
167. Not factorable.
168. $8(\mathrm{x}+1)$
169.

170. Cannot be represented as a rectangle using the tiles we have established, therefore it is not factorable.
171.

172. $2 a(2 x+4 y-3 z)$
173. $6 w^{3}(2 w-1)(2 w+1)$
174. $w x y\left(3 w^{2}+12 y-1\right)$
175. $9 a^{2} b^{2}(3 b+1-2 a)$
176. $6 m n^{2}\left(m^{2}+3 m n-2+4 n\right)$
177. $(5 x+3)(a+b)$
178. $(3 m+5)(x-1)$
179. Not factorable
180. $(4 t+1)(m+7)$
181. $(3 t-1)(x-y)$
182. $(4 y-x)(p+q)$

Challenge: $(a+b)(c+d)$
183. $(w+z)(x+y)$
184. $(x+1)(x-y)$
185. $(x+3)(y+4)$
186. $(2 x+3 y)(x+2)$
187. $(m+4)(m-n)$
188. $\left(3 a-2 b^{2}\right)(a-3)$

Refer to solutions guide to see algebra
tiles for questions 189-192.
189. $(x+4)(x+2)$
190. $(x+7)(x+2)$
191. $(x-6)(x-1)$
192. $(x-1)(x+10)$
193. $(a+5)(a+1)$
194. $(n+5)(n+2)$
195. $(x-6)(x+5)$
196. $(q+5)(q-3)$
197. $(k-7)(k+8)$
198. $(t+8)(t+3)$
199. $(y-10)(y+3)$
200. $(g-10)(g-1)$
201. $(s-10)(s+8)$
203. $(x-9)(x+3)$
203. $(x-9)(x+3)$
205. $2(y-4)^{2}$
206. $(a-9)(a-5)$
207. $2(x+5)(x-2)$
208. $\left(x^{2}-5\right)\left(x^{2}+2\right)$
209. $\left(w^{3}+4\right)\left(w^{3}+3\right)$
210. $\left(p^{4}-7\right)\left(p^{4}+3\right)$
211. $x(8-x)(7+\mathrm{x})$
212. $\left(x^{2}+16\right)\left(\mathrm{x}^{2}-5\right)$
213. Not factorable.
214. $(x-5 y)(x-y)$
215. $(x+9 y)(x-4 y)$
216. $(a b-3)(a b-2)$
Challenge: $(2 x+3)(x+2)$
217. $(a+4)(2 a+3)$
218. $(5 a-2)(a-1)$
219. $(3 x-2)(x-3)$
220. $(2 y+3)(y+3)$
221. $(5 y+1)(y-3)$
222. $(2 x-3)(5 x-1)$
223. $(2 x+1)(x+1)$ 224. $(3 k-4)(2 k+1)$ 225. $(2 y+3)(3 y+1$ 226. $(3 x+2)(x-6)$ 227. $x(3 x+1)(\mathrm{x}-2)$
228. $(3 x+1)(3 x+4)$
229. $(7 x+3)(3 x+4)$
230. $x(3 x-5)(2 x+3)$
231. $2(5 t-3)(t+1)$
232. $(3 x-y)(x-7 y)$
233. $(2 c-d)(2 c-d)$
234. $\left(x^{2}+2\right)\left(2 x^{2}+3\right)$
Challenge:

$$
\begin{aligned}
& \left(x^{2}-4\right) \\
& (x+2)(x-2) \\
& x^{2}-4=(x+2)(x-2)
\end{aligned}
$$

235. Answered on page. 236. $x^{2}-9$
$(x+3)(x-3)$
$x^{2}-9=(x+3)(x-3)$
236. $4 x^{2}-4$
$(2 x+2)(2 x-2)$
$4 x^{2}-4=(2 x+2)(2 x-2)$
237. $9 x^{2}-16$
$(3 x+4)(3 x-4)$
$9 x^{2}-16=(3 x+4)(3 x-4)$
238. $(a+5)(a-5)$
239. $(x+12)(x-12)$
240. $(1+c)(1-c)$
241. $4(x+3)(x-3)$
Note:
$(2 x+6)(2 x-6)$ is not fully
factored because there is GCF that can be removed.
242. $(3 x+y)(3 x-y)$
243. $\left(5 a^{2}+6\right)\left(5 a^{2}-6\right)$
244. $(7 t+6 u)(7 t-6 u)$
245. $7(x+2 y)(x-2 y)$
246. $-2(3 a+b)(3 a-b)$
247. $\left(d^{2}+3\right)\left(d^{2}-3\right)$
248. $\left(\frac{a}{3}+\frac{b}{4}\right)\left(\frac{a}{3}-\frac{b}{4}\right)$
249. $\left(\frac{x y}{7}+1\right)\left(\frac{x y}{7}-1\right)$
250. $x^{2}+4 x+4$
$(x+2)(x+2)$
$x^{2}+4 x+4=(x+2)(x+2)$
Factored Form: $(x+2)^{2}$
251. $x^{2}-3 x-3 x+9$
$(x-3)(x-3)$
$x^{2}-6 x+9=(x-3)(x-3)$
Factored Form: $(x-3)^{2}$
252. $9 x^{2}+12 x+12 x+16$
$(3 x+4)(3 x+4)$
$9 \mathrm{x}^{2}+24 \mathrm{x}+16=(3 \mathrm{x}+4)(3 \mathrm{x}+4)$
Factored Form: $(3 x+4)^{2}$
253. $4 x^{2}-2 x-2 x+1$
$(2 x-1)(2 x-1)$
$4 x^{2}-4 \mathrm{x}+1=(2 \mathrm{x}-1)(2 \mathrm{x}-1)$
Factored Form: $(2 x-1)^{2}$
254. $(x+7)^{2}$
255. $(2 x-1)^{2}$
256. $(3 b-4)^{2}$
257. $4(4 m-1)^{2}$

Careful. Look for the GCF first.
259. $(9 n+5)^{2}$
260. $(9 x-8 y)^{2}$
261. $3(a+b)(a-b)$
262. $4(x+4)(x+3)$
263. $\left(x^{2}+4\right)(x+2)(x-2)$
264. $2(y-4)(y+3)$
266. $(m+3)(m-3)\left(m^{2}+4\right)$
267. $(x+1)(x-1)\left(x^{2}+1\right)\left(x^{4}+1\right)$
268. $x(x+y)(x-y)$
268. $x(x+y)(x-y)$ 269. $(x+2)(x-2)(x+1)(x-1)$
269. $(x+2)(x-2)(x+1)(x-1)$
271. $(a+b+c)(a+b-c)$
271. $-4 d c$
272. $(m+11)(m+10)$
273. $5(2 x-1)$
274. $\pm 1, \pm 4, \pm 11$
275. $\pm 8,0,3$
276. $k=9$
277. $k=8$
278. b
279. $-18 m^{2}-48 m-32$
280. $4 x^{2}+2 \mathrm{x}$
281. The second line should read
$10 x^{2}+5 x+4 x+2$. The
simplified answer would then be $10 x^{2}+9 x+2$.
282. Factor by grouping
283. The first step in decomposition
should have read
$2 x^{2}-8 x+3 x-12$
$2 x(x-4)+3(x-4)$
$(2 x+3)(x-4)$
284. If we expand the two binomials, the middle term will not equal -17 .
285. $\left(x^{2}+2\right)\left(x^{2}+2\right)$

$$
\begin{aligned}
& \text { +2) }\left(x^{2}+2\right) \\
& x^{4}+2 x^{2}+2 x^{2}+4 \\
& x^{4}+4 x^{2}+4
\end{aligned}
$$

286. We would need to describe the tiles in 3 -dimensions.
287. $x^{3}+3 x^{2}+3 x+1$

Additional Material:

288. $x= \pm 6$
289. $x= \pm 4$
290. $x= \pm \frac{3}{2}$
291. $x= \pm \sqrt{7}$
292. $x=-8$ or 7
293. $x=-3$ or 7
294. $x=\frac{3}{2}$
295. $n=3$ or $\frac{2}{3}$
296. $a=b$ or $a=-b$
297. $x^{3}+2 x^{2}+3 x+2=(x+1)\left(x^{2}+x+2\right)$
298. $x^{2}+2 x^{2}+3 x+2=(x+1)\left(x^{2}+x+2\right)$
299. $t^{3}+3 \mathrm{t}^{2}-5 t-4=(t+4)\left(\mathrm{t}^{2}-t-1\right)$
300. $t^{3}+3 \mathrm{t}^{2}-5 t-4=(t+4)\left(\mathrm{t}^{2}-t-1\right), ~\left(299 . m^{3}+2 m^{2}-m-4=(m+1)\left(m^{2}+m-2\right.\right.$
301. $m^{3}+2 m^{2}$
302. $x^{3}-4 x^{2}-2 x+8=(x-4)\left(x^{2}-2\right)$
303. $x^{2}-4 x^{2}-2 x+8=(x-4)\left(x^{2}-2\right)$
304. $m^{3}+3 m^{2}-4=(m+2)\left(m^{2}+m-2\right)$
305. $n^{3}+2 n^{2}-n-2=\left(n^{2}-1\right)(n+2)$
306. $6 r^{2}-25 r+14-(3 r-2)(2 r-7)$
307. $6 r^{2}-25 r+14=(3 r-2)(2 r-7)$
308. $12 s^{3}+3 s^{2}-20 s-5=\left(3 s^{2}-5\right)(4 s$
309. $4 y^{2}-29=(2 y-5)(2 y+5)-4$

Pa g e $\mathbf{5 9}$ |Polynomials
Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

[^0]: Page 50|Polynomials

[^1]: Page 51|Polynomials

