## II) Investigating Rate

Monday, September 11,2017 2:20 PM
Reaction Rate: the speed of a reaction

> ative talmeasure ama
quad amountopproductformed

Mathematically, rate | $\Delta$ quantity |
| :---: |
| time |

amount of reactantuser What is $\Delta$ ? "change in" $\operatorname{cim} e_{\text {https://www.absorblearning.com/chemistry/demo/units/LR1501. }}^{\text {html\#|ntroduction }}$ htm|\#Introduction
What are some examples of a 'quantity' that can change in a reaction? reactant used/product

- concentration oe a solution - volume of reactantused/product formed

Therefore, what are some valid units for rate? *mass of "1

$$
\begin{aligned}
& \text { erefore, what are some valid units for rate? } \\
& \frac{m}{s} \frac{\mathrm{~m}}{\mathrm{~s}} \frac{\mathrm{~L}}{\mathrm{~min}} \frac{\mathrm{Kg}}{\mathrm{nr}} \frac{\mathrm{Kg}}{\mathrm{~min}}<\text { bottom must be time }
\end{aligned}
$$

Suppose we observe the following reaction in the lab. What are some quantities we could measure over a period of time in order to obtain a reaction rate?

$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{\text {(aq) }} \Rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}+\Delta E$ (heat)
Figure 2. Measuring the volume of gas given off (1).


- mass of mg lost (g) /unit al time (s)
- volume of $H$ gas produced (mc) / time (s)
- mass of H2 gasproduced / time (s)


## $\epsilon$

Figure 3. Measuring the volume of gas given off (2). (1)

Rate can be measured by measuring the consumption of a reactant, or measuring the production of a product, all the while timing the reaction.
Suppose the rate for the reaction under discussion was determined by measuring the


Suppose the rate is determined by monitoring the increase in volume of the product $\mathrm{H}_{2}$
gas. Draw a graph for this:

$\rightarrow *+12(g)$ is produced very quickly bloc more effective collisions ale more effective coulis

- Less tia (g) formed as the reactants become used up... tres effective collisions occuring
- reactants have been usedup. max volume al $\mathrm{H}_{2}(g)$ has been produced. no more effective
Why does the graph have this shape?
Remember from math that slope $=\frac{r \text { lose }}{=} \frac{\uparrow \cup n}{\rightarrow} \frac{y \text {-axis }}{x \text {-axis }}$
What is the rise (y axis) in each of the graphs we've just drawn?
A change in $\qquad$ quantity .(dep.var.)
What is the run (the $x$ axis) in each?
A change in $\qquad$ (indep.uar.)
Therefore, what does the slope of these graphs represent?

i neretore, what does the slope or thesegrapnsrepresent!

reaction
rate $=$ slope af!
line!


Figure 6. Graph showing the changing rate of a reaction.
https://www.absorblearning.com/chemistry/demo/units/ LR1501.html\#Graphsandrates

## Assignment 1:

1) For the reaction: $\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{HCl}_{(\mathrm{aq})}-\rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$

Describe three things that you could measure while timing the reaction to calculate a reaction rate. For each, state the quantity being measured and what substance is being measured.
2) For the reaction: $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Describe three things that you could measure while timing the reaction to calculate a reaction rate. For each, state the quantity being measured and what substance is being measured.
3) Hebden page 10, question 17
4) For the reaction: $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Draw a graph for:
a) Mass loss of $\mathrm{O}_{2}$ per unit time as the reaction proceeds
b) volume gain of $\mathrm{H}_{2} \mathrm{O}$ per unit time
c) rate per unit time

