III) Calculating Rate

Monday, September 11, 2017 2:19 PM

Calculate the rate of the demonstration reaction using the eudiometer tube setup.
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}_{(\mathrm{aq})} \Rightarrow \mathrm{MgCl}_{2(\mathrm{aq)}}+\mathrm{H}_{2(\mathrm{~g})}$
Volume of H_{2} gas: 48.7 mL
Time: $17.41+16.39+17.57=17.12 \mathrm{~s}$
Average Rate: rate $=\frac{\Delta \text { quantity }}{\Delta \text { time }}=\frac{48.7 \mathrm{~mL}}{17.12 \mathrm{~s}}=2.84 \frac{\mathrm{~mL}}{\mathrm{~s}}$
Why is the rate we calculated an 'average' rate? measuring reaction rate:
rate using

* Calculate the/pass of the piece of magnesium used:

$$
\rightarrow m: 0.05 \text { rate }=\frac{\Delta \text { quant. }}{\text { time }}=\frac{0.059}{\frac{0.17 .5}{4 \mathrm{s.f}}}=0.0
$$

We will work through questions \#1, 2, and 4 on p. 2 of Hebden and then \#19 on p.11.

1) 5.0 mg reacting $\bar{\omega} \mathrm{HCl}$ time: 150 s
2) $\frac{45 . \mathrm{OgCaCO}_{3}(\mathrm{~s})}{\mathrm{w}}$ dilute HCl

$$
R . R=2.35 \frac{\mathrm{gCa} \mathrm{cO}_{3}}{\mathrm{~min}} \text { How long? } \Rightarrow \text { solve far time. }
$$

$$
\text { au. rxnurate }=\frac{\text { quantity }}{\Delta \text { time }} \therefore \text { time }=\frac{\text { squantity }}{\text { rxnrate }}
$$

4 a) moles $/ \mathrm{sec}$
b) $\mathrm{min} / \mathrm{mx}$

$$
\begin{aligned}
& \text { time }=\frac{45.0 \mathrm{chaCO}_{3}}{2.35 \mathrm{~s}} \\
& \text { time }=19.1 \mathrm{~min} \mathrm{~min}
\end{aligned}
$$

b) $\min /{\underset{\tau}{x}}_{x}^{x}$

$$
\text { c) } \frac{\mathrm{mols} / \mathrm{L}}{\sec }=\frac{\mu}{\sec } \text { d) } \frac{g x}{()_{\text {time }}} \text { e) } \frac{\mathrm{ml}}{\mathrm{hr}} \text { f) } \frac{\mathrm{g}}{\mathrm{~min}}
$$

19) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
a) rate $=\frac{\Delta q}{\Delta t}=\frac{31.0 g-24.6 \mathrm{~g}}{\frac{60}{25.0} \cdot 0}=\frac{6.4 \mathrm{~s}}{60}=0.109 \frac{\mathrm{~g}}{\mathrm{~s}}$
b) rate $=20.2-17.45=1 r_{1}$ r.L. 7 ? $0.11 \frac{9}{9}$
he above is data for a reaction in which Pb is a reactant.
a) Calculate the overall rate of the reaction.
b) Calculate the rate from $0-30$ s and from $30-60$ s.
c) Explain why the $30-60 \mathrm{~s}$ rate is lower than the 0-30s rate.
20) When CaCO_{3} reacts with $\mathrm{HCl}, \mathrm{CO}_{2(\mathrm{~g})}$ is produced. If 243 mL of CO_{2} is produced in 22 s , what is the rate of the reaction?

Time (s)	Mass of $\mathrm{Pb}(\mathrm{g})$
0	65
15	52
30	41
45	32
60	25

1)

Rraphinc Partner Assign. Par
$=\rightarrow$ Due sept 26 in
3) A 5.0 g sample of Mg reacts completely with HCl in 120 s . What is the average rate of this reaction in g Mg per minute?
4) How long will it take (in seconds) for 45.0 g of Mg to react with HCl , if the average rate of the reaction is $2.30 \mathrm{~g} \mathrm{Mg} / \mathrm{min}$?
5) Electrolysis of $\mathrm{H}_{2} \mathrm{O}$ produces O_{2} and H_{2}. If O_{2} gas is produced at an average rate of $28.5 \mathrm{~mL} / \mathrm{min}$, calculate the consumption of $\mathrm{H}_{2} \mathrm{O}$ in grams per second.
6) Given the reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \Rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
a) If 2.32 g of HCl are produced in 4.0 min , what is the rate of reaction in mol $\mathrm{HCl} /$ second?
b) If H_{2} is used up at a rate of $30.0 \mathrm{~mol} / \mathrm{s}$, at what rate is HCl produced in $\mathrm{g} / \mathrm{min}$? (hint: use stoich table!)
7) $\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{~g})}+8 \mathrm{O}_{2(\mathrm{~g})} \Rightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

If 17.6 g of $\mathrm{C}_{5} \mathrm{H}_{12}$ is burned in three seconds, calculate the rate of the reaction in grams of CO_{2} per second.

