Lesson \#1 - Intro to Polynomials \& Addition/Subtraction
constant addition multiplication
Term: A number and or variable connected by Subtraction or division (also called a
monomial) exponents operations.
monomial $5 \sqrt{3}^{2}+\sqrt{3}(5+\sqrt{7})-7$ constant: termwith NO variable $\operatorname{sign} \Theta / \Theta$
coefficient
variables: letterstorepmensent numbers. belong ${ }^{5}-10$ the constant
2-crefficients must be real numbers and exponents must be condole numbers)

Degree of a...
Term: add ar the exponents within ie.
ie. $4 x^{(2)}+4 x^{\prime} y^{2}+6$ the 1 term.
Polynomial: the high
white (4)
shaded Θ
\square
1
-1 degree al all terms
 degree a

Zero Principle: the idea that the addition of opposites cancel each other out and the result is zero

example: Subtract the following using algebra tiles $(2 x-1)-(-x+2)$

"zeropair" - seal
opposites
I. Simplify the following
"addin gzero"

$$
\begin{aligned}
x^{2} \neq x & \neq x y x \\
x y & =y x y
\end{aligned}
$$

- -you can simifiry expression by collecting LIKE
variables and experms terms ens) with exactly the same

1. $7 x+3 y+5 x-2 y$

$$
\begin{aligned}
& =7 x+5 x+3 y-2 y \\
& =12 x+y
\end{aligned}
$$

II. Add/Subtract the following
3. $\left(x^{2}+4 x-2\right)+\left(2 x^{2}-6 x+9\right)$

$=11 x^{2}-5 x y$
(1) distribute the θ sign
4. $44 x^{2}-2 x+3\left\{-\left(3 x^{2}+5 x-2\right) \quad \Theta \Theta=\Theta\right.$ $4 x^{2}-2 x+3-3 x^{2}(-5 x)+2$
(2) collect like terms.

$$
=x^{2}-7 x+5
$$

$$
\begin{aligned}
& x^{2}+4 x-2+2 x^{2}-6 x+9 \\
& x^{2}+2 x^{2}+4 x-6 x-2+9 \\
& =3 x^{2}-2 x+7
\end{aligned}
$$

What is a Polynomial?

What is a Term?
A term is a number and/or variable connected by multiplication or division. One term is also called a monomial.

Each term may have a coefficient, variable(s) and exponents. One term is also called a monomial. If there is no variable present...we call the term a constant.
Answer the questions below.

| 1.What is/are the
 coefficients below? | 2.What is/are the
 constant(s) below? | 3.What is/are the
 variable(s) below? |
| :--- | :--- | :--- | :--- |
| $5 x y^{2}-7 x+3$ | $12 x^{2}-5 x+13$ | $5 x y^{2}+3$ |

A polynomial is an expression made up of one or more terms connected to the next by addition or subtraction.

We say a polynomial is any expression where the coefficients are real numbers and all exponents are whole numbers. That is, no variables under radicals (rational exponents), no variables in denominators (negative exponents).

The following are polynomials:

$$
x, \quad 2 x-5, \quad 5+3 x^{2}-12 y^{3}, \quad \frac{x^{2}+3 x+2}{2}, \quad \sqrt{3} x^{2}+5 y-z
$$

The following are NOT polynomials:

$$
x^{-2}, \quad 3 \sqrt{x}, \quad 4 x y+3 x y^{-3}, \quad 12 x z+3^{x}
$$

Which of the following are not polynomials? Indicate why.

4. $3 x y z-\frac{2}{x}$	5. $\frac{1}{-5} x^{3}-5 y$	6. $2 x-4 y^{-2}$
7. $(3 x+2)^{\frac{1}{3}}$	8. $\sqrt{3}+x^{2}-5$	9. $\frac{5}{3} x-2^{x}$

Classifying polynomials:

By Number of Terms:

- Monomial: one term.
Eg. $\quad 7 x, \quad 5, \quad-3 x y^{3}$
- Binomial: two terms

Eg. $\quad x+2, \quad 5 x-3 y, y^{3}+\frac{5 x}{3}$

- Trinomial: three terms Eg.
$x^{2}+3 x+1, \quad 5 x y-3 x+y^{2}$
- Polynomial: four terms E .

$$
7 x+y-z+5, \quad x^{4}-3 x^{3}+x^{2}-7 x
$$

By Degree:
To find the degree of a term, add the exponents within that term.
Eg. $\quad-3 x y^{3}$ is a $4^{\text {th }}$ degree term because the sum of the exponents is 4 .
$5 z^{4} y^{2} x^{3}$ is a $9^{\text {th }}$ degree term because the sum of the exponents is 9 .

To find the degree of a polynomial first calculate the degree of each term. The highest degree amongst the terms is the degree of the polynomial.

Eg. $\quad x^{4}-3 x^{3}+x^{2}-7 x$ is a $4^{\text {th }}$ degree polynomial. The highest degree term is x^{4}. $3 x y z^{4}-2 x^{2} y^{3}$ is a $6^{\text {th }}$ degree binomial. The highest degree term is $3 x y z^{4}$ ($6^{\text {th }}$ degree)

Classify each of the following by degree and by number of terms.

10. $2 x+3$	11. $x^{3}-2 x^{2}+7$	12. $2 a^{3} b^{4}+a^{2} b^{4}-27 c^{5}+3$
Degree: 1	Degree:	Degree:
Name: $\underline{\text { Binomial }}$	Name:	Name:
Degree: 7	14. Write a polynomial with one term that is degree 3.	15. Write a polynomial with three terms that is degree 5.
Name:		

Algebra Tiles

The following will be used as a legend for algebra tiles in this guidebook.

1
-1

x^{2}

$-x^{2}$

Write an expression that can be represented by each of the following diagrams.
20.

[^0]

The Zero Principle:
The idea that opposites cancel each other out and the result is zero.
Eg. $x+3+(-3)=x \quad$ The addition of opposites did not change the initial expression.

31. What is the sum of the following tiles?	32. If you add the following to an expression, what have you increased the expression by?

39. When considering algebra tiles, what makes two tiles "alike"?
40. What do you think makes two algebraic terms alike? (Remember, tiles are used to represent the parts of an expression.)

Collecting Like Terms without tiles:

Exactly the same variable \& exponents.

You have previously been taught to combine like terms in algebraic expressions.
Terms that have the same variable factors, such as $7 x$ and $5 x$, are called like terms.

Simplify any expression containing like terms by adding their coefficients.
Eg.1. Simplify:

$$
\begin{aligned}
& 7 x+3 y+5 x-2 y \\
& 7 x+5 x+3 y-2 y \\
& =12 x+y
\end{aligned}
$$

Eg.2. Simplify
$3 x^{2}+4 x y-6 x y+8 x^{2}-3 y x$ $3 x^{2}+8 x^{2}+4 x y-6 x y-3 x y$ ○○ $3 y x$ is $=11 x^{2}-5 x y$

Adding \& Subtracting Polynomials without TILES.

ADDITION
To add polynomials, collect like terms.
Eg.1. $\quad\left(x^{2}+4 x-2\right)+\left(2 x^{2}-6 x+9\right)$
Horizontal Method:

$$
\begin{aligned}
& =x^{2}+4 x-2+2 x^{2}-6 x+9 \\
& =x^{2}+2 x^{2}+4 x-6 x-2+9 \\
& =3 x^{2}-2 x+7
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vertical Method: } \\
& \qquad \begin{array}{l}
x^{2}+4 x-2 \\
\\
\underline{2 x^{2}-6 x+9} \\
\\
=3 x^{2}-2 x+7
\end{array}
\end{aligned}
$$

SUBTRACTION

It is important to remember that the subtraction refers to all terms in the bracket immediately after it.
To subtract a polynomial, determine the opposite and add.
Eg.2. $\left(4 x^{2}-2 x+3\right)-\left(3 x^{2}+5 x-2\right)$

Multiplying each term by -1 will remove the brackets from the second polynomial.

This question means the same as:

$$
\begin{aligned}
& \left(4 x^{2}-2 x+3\right)-\mathbf{1}\left(3 x^{2}+5 x-2\right) \\
& =4 x^{2}-2 x+3-3 x^{2}-5 x+2 \\
& =4 x^{2}-3 x^{2}-2 x-5 x+3+2 \\
& =x^{2}-7 x+5
\end{aligned}
$$

We could have used vertical addition once the opposite was determined if we chose.

44. $(4 x+8)+(2 x+9)$	45. $(3 a+7 b)+(9 a-3 b)$	46. $(7 x+9)-(3 x+5)$
47. Add. $\begin{aligned} & (4 a-2 b) \\ & +(3 a+2 b) \end{aligned}$	48. Subtract. $\begin{gathered} (7 x-3 y) \\ -(-5 x+2 y) \end{gathered}$	$\begin{aligned} & \text { 49. Subtract. } \\ & \qquad \begin{array}{l} (12 a-5 b) \\ -(-7 a-2 b) \end{array} \end{aligned}$

[^0]: P a g e $6 \mid$ Polynomials

