3) RELATIONS & FUNCTIONS: DOMAIN AND RANGE

Warm-Up #1: List all the values of \(x \) in each relation.

a) \((1, 3), (2, 5), (9, 4)\)

b)
\[
\begin{array}{c|c}
 x & y \\
 \hline
 -3 & 4 \\
 -1 & 7 \\
 0 & 1 \\
\end{array}
\]

\(\Rightarrow \) \(a) \) \(x = 1, 2, 9 \)

\(b) \) \(x = -3, -1, 0 \)

c) \(y = 2x - 3 \) \(\Rightarrow c) \) \(x = \) any value

Warm-Up #2: List all the values of \(y \) in each relation.

a) \((1, 3), (2, 5), (9, 4)\)

b)
\[
\begin{array}{c|c}
 x & y \\
 \hline
 -3 & 4 \\
 -1 & 7 \\
 0 & 1 \\
\end{array}
\]

\(\Rightarrow \) \(a) \) \(y = 3, 5, 4 \)

\(b) \) \(y = 4, 1, 1 \)

\(c) \) \(y = 2x - 3 \) \(\Rightarrow c) \) \(y = \) any value

Warm-Up #3: For each relation, write an inequality statement.

a) \(y > 2 \) \(x \leq -2 \)

b) \(x \leq -2 \) \(-4 \leq x \leq 3 \)

c) \(x = -1, 0, 1, 2, 3 \)

d) \(x = -1, 0, 1, 2, 3 \)

What is different about part d in the warm up?

a) - c) represent continuous data (decimals, fractions, etc.) It includes values between data points eg. age, height

c) Discrete data - includes only the values listed, no points between. eg. # of people
Warm-Up #4: Fill in the table below, with the correct symbol for each number set. Then, identify the number set represented in the examples from warm-up #3.

<table>
<thead>
<tr>
<th>Number Set</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>(\mathbb{R})</td>
</tr>
<tr>
<td>Rational</td>
<td>(\mathbb{Q})</td>
</tr>
<tr>
<td>Irrational</td>
<td>(\mathbb{Q})</td>
</tr>
<tr>
<td>Integer</td>
<td>(\mathbb{Z})</td>
</tr>
<tr>
<td>Whole</td>
<td>(\mathbb{W})</td>
</tr>
<tr>
<td>Natural</td>
<td>(\mathbb{N})</td>
</tr>
</tbody>
</table>

Review your answer in the warm up. Identify the appropriate number set for each inequality.

- a) \(\mathbb{R}, \mathbb{Q}, \mathbb{Q}, \mathbb{Z}, \mathbb{W}, \mathbb{N} \) \(x > 2 \) \(\text{does not include} \ (w, n) \)
- b) \(\mathbb{R}, \mathbb{Q}, \mathbb{Q}, \mathbb{Z} \) \(x \geq -2 \)
- c) \(\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{W}, \mathbb{N} \) \(-4 \leq x \leq 3 \)
- d) \(\mathbb{R}, \mathbb{Q}, \mathbb{Z} \) \(x = -1, 0, 1, 2, 3 \)

When interpreting information to solve a problem, it is important to make sense of the possible values of each quantity being compared.

Example #1: Determine the possible values for each quantity in the given relation.

![Graph showing continuous data with population vs. year]

\(y = \) population = \(y \geq 0 \)
- no negative
- all real numbers

\(x = \) year = \(x \geq 0 \)
- no negatives
- all real numbers

When comparing two quantities, the words **domain** and **range** are used to describe the values that are appropriate.

- The **domain** is the set of all possible values for the independent variable in a relation. (\(x \)-values)
- The **range** is the set of all possible values for the dependent variable in a relation. (\(y \)-values)
There are a variety of ways to express the **domain** and **range** of a relation.

1. **Words** – A description of the value that are allowed.

 Example: *the range is the set of all whole numbers less than twenty*.

2. **Number Line** - A picture of the values that are allowed.

 Example:

 ![Number Line Diagram]

3. **A List** – used for discrete data

 Example: For the relation \((3, 1), (2, -3), (7, 0.4)\)

 - the domain is \(\{3, 2, 7\}\)
 - the range is \(\{-3, 0.4\}\)

4. **Set Notation** – a formal way to give the values of the domain and range.

 Example: \(\{x \geq -1, x \in \mathbb{Z}\}\)

 What does it all mean??

 - \(\{\}\) = type of brackets used for a set
 - \(\leq\) means “such that”
 - \(\in\) means “is an element of”
 - \(\mathbb{Z}\) = set of integers
 - \(\leq\) means “is a member of”
 - \(\{\}\) means “is greater than or equal to”
 - \(\mathbb{Z}\) means “is an integer”

5. **Interval Notation** – uses different brackets to indicate an interval

 Example: \([0, 10]\) means all numbers between zero and ten inclusive.

 Example: \((0, 10]\) means all numbers between zero and ten (not including 0 or 10)

 Example: \([10, \infty)\) means all numbers greater than 10

 - **[square brackets]**: equal to: \(\circ - \circ\)
 - closed dots (includes the points)

 - **(curved brackets)**: can’t equal: \(\circ - \circ\)
 - open dots (doesn’t include points)
Example #2: Consider the relation **all real numbers between -5 and 2 including -5 but not including 2.**

<table>
<thead>
<tr>
<th>Number Line:</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Number Line Diagram]</td>
</tr>
</tbody>
</table>

Domain: \(\mathbb{R} \)
Inequality Statement: \(-5 \leq x < 2\)

<table>
<thead>
<tr>
<th>Set Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x \mid -5 \leq x < 2, \ x \in \mathbb{R}})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-5, 2))</td>
</tr>
</tbody>
</table>

Could I use a list? Explain: Yes... but not practical. Because lists are only good for discrete data. We have a continuous line.

Example #3: Complete the table.

<table>
<thead>
<tr>
<th>Words: your age from grade until now</th>
<th>Number Line:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 years old</td>
<td>![Number Line Diagram]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List:</th>
</tr>
</thead>
<tbody>
<tr>
<td>is this data discrete? or continuous?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ y \mid 6 \leq y < 16, \ y \in \mathbb{R}})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>([6, 15)) or ((6, 15)) or ([6, 15])</td>
</tr>
</tbody>
</table>

Let's see how this applies to graphs!
Example #4: Write the domain and range for each relation, as specified.

a)
- \text{Domain as a list: } \{-3, -2, -1, 1, 2, 3, 4, 5\}
- \text{Domain in words: } x \text{ is between } -4 \text{ and } 4
- \text{Range in set notation: } \{y | y = -2, -1, 0, 1, 2, y \in \mathbb{Z}\}
- \text{Range in interval notation: } [0, 4]

b)
- \text{Domain as a list: } \{-3, -2, -1, 1, 2, 3, 4, 5\}
- \text{Domain in words: } x \text{ is between } -4 \text{ and } 4
- \text{Range in set notation: } \{y | y = -2, -1, 0, 1, 2, y \in \mathbb{Z}\}
- \text{Range in interval notation: } [0, 4]

c)
- \text{Domain in set notation: } \{x | x < \infty, x \in \mathbb{R}\}
- \text{Domain in interval notation: } (-\infty, 3)
- \text{Range in set notation: } \{y | 0 \leq y < \infty, y \in \mathbb{R}\}
- \text{Range in interval notation: } (-\infty, a)

d)
- \text{Domain in set notation: } \{x | x = -3, -1, 4, x \in \mathbb{Z}\}
- \text{Domain in interval notation: } (-\infty, 3)
- \text{Range in set notation: } \{y | y = -3, -1, 0, 3, 4, y \in \mathbb{Z}\}
- \text{Range in interval notation: } (-\infty, a)

Homework

Assignment #3
pages 13-19 Questions #36-66
Domain & Range (continued)

Recall, (2,5) and (-3,7) are called ordered pairs because the order of the two elements is important.

- The first set of elements in the ordered pair is called the domain of the relation.
- The second set of elements in the ordered pair is called the range of the relation.

36. Challenge Question:
List the domain and range for the relation (1,1), (2,4), (3,9), (4,16)

Answer:
Domain: {1,2,3,4}
Range: {1,4,9,16}

37. Which of the following is/are true?

- a. The domain is the set of permissible values of x.
- b. The domain is the set of permissible values of y.
- c. The range is the set of permissible values of x.
- d. The range is the set of permissible values of y.

Your notes here...
Domain & Range of Discrete Data (points):

Remember, domain is all "first elements" and range is all "second elements".

Since we are often working with graphs that have an x-axis and a y-axis.

Domain is often described as all permissible values of x.
Range is often described as all permissible values of y.

Find the domain and range:

Example:
Find the domain and range of the relation: (2,3), (3,4), (4,5), (5,6)

Solution:Simply list the first elements, then second:
domain: {2,3,4,5} range: {3,4,5,6}

Example:
Find the domain and range of the following relation.

Solution:
First, find the coordinates of the BIG points:
{(2,4), (7,9), (10,-3)}
Domain: {2,7,10} Range: {4,9,-3}

It's OK that there is no apparent pattern...this is still a relation.

Find each of the following.

38. Find the domain for the following relation.
 (−2,4), (3,5), (5,7), (6,11)

39. Find the range for the relation below.
 (2,3), (4,3), (6,3), (8,3)

40. Find the domain for the graphed relation.

Page 14 | Relations Copyright Mathbeacon.com. Use with permission. Do not use after June 2019
41. **Challenge Question**: Find the domain of the following graph.

42. How many items are there in the domain of the relation above?

43. What is the smallest item in the domain?

44. What is the biggest value in the domain?

45. How many items are there in the range?

46. What is the smallest item in the range?

47. What is the biggest item in the range?
Domain & Range of Continuous Data (Lines and Curves): [Definition on page 25]

When the graph of a relation is a line or curve, the domain and range cannot be expressed as a list of numbers as in the earlier questions. Why is this so?

Consider Example A and B.

<table>
<thead>
<tr>
<th>Use Inequalities</th>
<th>Use Interval Notation</th>
<th>Use a number line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A</td>
<td>Example A</td>
<td>Example A</td>
</tr>
<tr>
<td>Domain: $-4 \leq x < 3$</td>
<td>Domain: $[-4,3)$</td>
<td>Domain: $\overline{\infty}$</td>
</tr>
<tr>
<td>Range: $2 < y \leq 4$</td>
<td>Range: $(2,4]$</td>
<td></td>
</tr>
<tr>
<td>Example B</td>
<td>Example B</td>
<td>Example B</td>
</tr>
<tr>
<td>Domain: $x \geq -4$</td>
<td>Domain: $[-4, \infty)$</td>
<td>Domain: $\overline{\infty}$</td>
</tr>
<tr>
<td>Range: $y \leq 3$</td>
<td>Range: $(\infty, 3]$</td>
<td></td>
</tr>
</tbody>
</table>

The inequality symbols:
- $<$, $>$, \leq, \geq

Set Notation:
- $x \in \mathbb{R}$: The domain is the set of real numbers.
- $(y|y \leq 0, y \in \mathbb{R})$: The range is the set of real numbers less than or equal to zero.
40. If a relation continues in both directions:

Use Interval Notation:
Domain:
Range:

41. The relation has a starting point but no ending point:

Use Inequalities:
Domain:
Range:

42. The relation has a non-permissible value:

Use Number Lines:
Domain:
Range:

43. The relation has a starting point and a finishing point:

Use words:
Domain:
Range:

44. The relation has a starting point and a finishing point:

Use Inequalities:
Domain:
Range:

45. The relation has no starting point or finishing point:

Use Interval Notation:
Domain:
Range:

Write a set of instructions for finding the domain of a function in:

54. Interval Notation:

55. Using a Number Line:

56. Using Inequalities:
57. Try to match each of the following graphs with domain and range below. (There are three on each graph)

A. \(x \in \mathbb{R}, \ y \in \mathbb{R} \)
B. \([1,9]\) and \([-7,1]\)
C. \([x|x \in \mathbb{R}], \ (y|y \leq 0, y \in \mathbb{R})\)
D. domain\([4,9], \ range\{4,7\}\)
E. \([x|x \geq -7, x \in \mathbb{R}], \ (y|y \geq 1, y \in \mathbb{R})\)
F. Domain is all real numbers from -5 to 8. Range is all real numbers from 3 to 8.

Find the domain and range for each of the following graphs.

58. Use set notation:
59. Use interval notation:
60. Use number lines:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find the domain and range for each of the following graphs.

<table>
<thead>
<tr>
<th>61. Use set notation:</th>
<th>62. Use interval notation:</th>
<th>63. Use number lines:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain:</td>
<td>domain:</td>
<td>domain:</td>
</tr>
<tr>
<td>range:</td>
<td>range:</td>
<td>range:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64. Use a list (discrete):</th>
<th>65. Use a list (discrete):</th>
<th>66. Use Interval notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain:</td>
<td>domain:</td>
<td>domain:</td>
</tr>
<tr>
<td>range:</td>
<td>range:</td>
<td>range:</td>
</tr>
</tbody>
</table>