4) RELATIONS \& FUNCTIONS: IRAPHING IN A DOMAIN

Table ae value where x could be anything $x \operatorname{com}(x \in R)$
In Lesson 2, when we graphed functions, we graphed in the domain of all real numbers.
Now, when you graph a relation, the domain may be:

1. Given as R (all real numbers) $x=$ anything
2. Given as a list, for example: $\{-2,-1,0,1,2\} \leftarrow x<$ only
3. Given as an inequality, for example: $\{x \geq 0\}$
$\tau_{\text {startwith } 0,1,2 \ldots \text { increase (NO Neg.) }}$

Example \#1: Graph the relation $y=2 x+1$ in the following domains.
set
notation
a) $\{x \mid x \in R\}$
" x is such that x is all real \#'s"

x	y
-2	-3
-1	-1
0	1
2	5
1	3

\rightarrow means I can choose anything for x in the table of values (no restriction)) because $x \in R$ - continuous (line)

- arrows an end (keep going)

List. List= Discrete data x

$$
y=2 x+1
$$

$$
\begin{aligned}
& \text { exact } \\
& \text { +is }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tact } \\
& \text { \#'s }
\end{aligned}
$$

x	y
-4	-7
-3	-5
y	$=2(-4)+1$
0	1
$y=2(-3)+1$	
y	y
y	$=2(0)+1$
$y=2(4)+1$	

... nothing elsenothing between

Inequality " x is such that x is less than -1 ,
c) $\{x \mid x<-1, x \in R\}$

$$
y=2(-2)+1
$$

$$
y=2(-3)+1
$$

$$
\begin{aligned}
& y=2(-4)+1 \\
& y-2 /-5)+1
\end{aligned}
$$

$$
y=2(-5)+1
$$

$$
y=2(-6)+1
$$

x	y
-2	-3
-3	-5
-4	-7
-5	-9
-6	-11

$$
y=2(-1)+1
$$ and x is arrear number"

started @ $x=-2$ but the inequality is $x<-1$
need to show an open dot (a) $x=-1$
shows that x can equal anything up to including -1

Example \#2: Find the domain and range of the following relations.
a) $y=2 x-8 \quad x \quad y$ values

$$
\begin{aligned}
& y=x-8 \\
& y=m x+b=\text { Line }=\text { continuous } \\
& \text { data }
\end{aligned}
$$

$$
\text { Domain }=\{x \mid x \in R\}
$$

$$
\text { Range }=\{y \mid y \in R\}
$$

Hint: Think about this in one of two ways:

1. Visualize the graph
2. Consider if there are any x-values that you can't plug into the equation (ones that will give you an ERROR in your calculator)
T apus on U "shape

$$
\frac{n a n}{x}\{x \mid x \in C\}
$$

Range $=$

$$
\{y \mid y \geq-1, y \times x\}
$$

$$
\begin{aligned}
& y=(-2)^{2}-1 \\
& y=(-1)^{2}-1 \\
& y=(0)^{2}-1 \\
& y=(1)^{2}-1
\end{aligned}
$$

x	y
-2	3
-1	0
0	-1

 range.

Updated June 2018
69. Draw a graph using the following domain and range.
$\{x \mid x=5\}$,
$\mid y \geq-4, y \in R$ continuous
line line
70. Challenge Question:

Graph the relation represented by the equation $y=3 x$.
71. What is the domain of $y=3 x$?

72. Challenge Question:

Graph the line represented by the equation $y=3 x$ if the domain is $x \geq-2$.

Graphing Relations and Domain:
When graphing a relation, the domain may be:

- Given as \boldsymbol{R} (all real numbers)
- Given as a list such as $\{-2,-1,0,1,2\}$
- Given as an inequality such as $x \geq 0$.

We will consider the impact each of these have when graphing the relation $y=2 x$

\qquad
\qquad
\qquad
\qquad
\qquad

Graph the relation $y=2 x$.
The domain is $\{x \mid x \in R\}$.

Any values of x would be permissible. This results in a continuous line in both directions.

Two arrow heads!

Graph the relation $y=2 x$.
Domain: $(0, \infty)$.

Any values of x greater than 0 would be permissible. This results in a continuous line starting at $x=0$ and moving in the positive direction.

One arrow head!

Graph each of the following for the given domain.

Graph each of the following for the given domain.
76. $y=3 x+2$

82. In your own words, describe the different ways a relation may look due to restrictions on the domain.

Finding the domain and range of an equation.

Becoming more familiar with the equation of particular relations (assuming there is one) allows you to quickly determine the domain or range.

Possible Strategies:

- Visualize the graph from memory (or actually plot it).
- Consider possible restrictions based on the equation. For example, $y=\sqrt{x}$ has a domain $x \geq 0$ because all negative values of x produce a "not real" output.

83. Find the domain of the relation:

$$
y=3 x
$$

84. Find the domain of the relation:
85. Find the domain of the relation:

$$
y=\sqrt{x-2}
$$

$$
y=x^{2}
$$

88. Find the range of the relation:
relation:

$$
y=3 x
$$

$$
y=x^{2}
$$

89. Challenge Question:

Consider the various ways graphs look because of the restrictions on their domain before you answer the following question.

Use the equation $C=10 n$ to graph the cost, C , of a family with ' n ' people to go to the movies.

90. Challenge Question:

Find a reasonable domain for the function above.

Find a reasonable range for the function above.

Some notes here...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

