5) RELATIONS & FUNCTIONS:
CONTINUOUS/DISCRETE & VERTICAL LINE TEST

Warm-Up: Students at Reynolds are selling t-shirts during lunch for $10 each.

a) Complete the following table of values:

<table>
<thead>
<tr>
<th>Number of t-shirts sold</th>
<th>Total amount of money made, in dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

\[y = x \cdot 10 = 10x \]

b) Graph the relation:
\((0,0), (1,10), (2,20), (3,30), (4,40), (5,50)\)

b) Can the dots be connected? Explain.

NO! Cannot sell part of a T-shirt... whole numbers only.

d) Fill in the table below, and add in your own example in.

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Continuous</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Graph will appear as Line</td>
<td>Graph will appear as series of points (scatterplot)</td>
</tr>
<tr>
<td></td>
<td>Occurs when quantities don’t “skip” values (or exclude)</td>
<td>Occurs when quantities can only be specific or whole items.</td>
</tr>
<tr>
<td></td>
<td>Occurs when having parts/fractions of quantities makes sense. (is allowed)</td>
<td>Occurs when part numbers do not make sense.</td>
</tr>
<tr>
<td>Example</td>
<td>Time</td>
<td>T-shirts</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td># students</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>pieces of cake</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Functions

A function is a **special type of relation**.

- For every \(x\)-value, there is only 1 \(y\)-value.

(if there are repeated \(x\)-values, it is not a function)
When a relation is presented as a graph, a quick method to determine whether or not it is a function is known as the **VERTICAL LINE TEST**.

If a vertical line intersects the graph at more than one point, the relation IS **NOT** a function.

Example #1: Do these graphs represent functions?

- **a)** Yes, a function
- **b)** No, not a function
- **c)** A dotted line is included instead of a vertical line to pass the VLT. The graph does not pass the VLT, so it is not a function.

Example #2: Do these relations represent functions? Justify your choice.

- **a)** \(\{(1, 3), (2, 4), (3, 5), (4, 3), (2, 1)\} \)
 - \(x = 2\) corresponds to \(y = 4 \) and \(y = 1 \) \(\therefore \) \(2\) \(y \)-values for \(1\) \(x \)-value. NOT a function.

- **b)**
 - **Name** | **Shoe Size**
 - --- | ---
 - Andrew | 10
 - Nathan | 11
 - Joel | 12
 - Aaron | 13
 - Simon | 12
 - **Yes, FUNCTION**

- **c)**
 - **Name** | **Sibling**
 - --- | ---
 - Anika | Jared
 - Anika | Joel
 - Anika | Nathan
 - Caroline | Aaron
 - Caroline | Simon
 - **repeats**
 - **NOT a function**

- **d)** \(y = 3x + 5 \)
 - **FUNCTION**

- **e)** \(y^2 = x \)
 - Only \(x \)-values are given: \(1, 4, 9 \)
 - **repeating/multiple \(x \)-values**
 - **NOT a function**

Homework

 ASSIGNMENT #5

Pages 25-29 Questions #91-109