NOT 1	
Not Name: Not Name:	
Lesson #7 - Factoring Trinomials $(ax^2 + bx + c)$, where $a \ne 1$	
 Lesson Focus: To use an algebraic method to factor a trinomial of the form ax² + bx + c, using one of two strategies: Strategy #1: The Decomposition Method / The DOX method Strategy #2: The X-Method (or The Trial & Error Method) 	
Review Example: Facto $3x^2 - 9x - 12$ completely.	
G(t; t)	
$= 3(x^{3}-3x-4) \times 10^{-4} = -4$ $= 3(x+1)(x-4) + 10=-3 + (-4)=-3$	
=3(x+1)(x-4) Best	
Note: In this example, after we remove the GCF, the coefficient on the "a" term (the x^2) term is 1.	vio
What if $a \neq 1$, even after common factoring?? (arif	
(ONLY use these two strategies if $a \ne 1$. If $a = 1$, look back at Lesson #6)	
decomposition Trical Alapha Alapha Trical Trical Tries Trical Trical Tries	1
nightmare!	
1	

Strategy #2: The X Method (or The Trial & Error Method)

1. Draw a large X under the trinomial, leaving one line of space in between. 2. On the LHS of the X, write two numbers that multiply to "a" (ie. two factors of "a") 3. On the RHS of the X, write two numbers that multiply to "c" (ie. two factors of "c") 4. Cross multiply, and check to see if the two numbers can add to "b". Keep trying new combinations of numbers until you find the "winning" numbers. Put "+" or "-" signs on the RIGHT HAND SIDE ONLY. Put the variable on the LEFT HAND SIDE ONLY. 5. Write the numbers in the X as factors. The top two numbers form the other factor. 6. Check your answer using FOIL	Steps	Example: Factor $2x^2 + 3x - 2$
	one line of space in between. 2. On the LHS of the X, write two numbers that multiply to "a" (ie. two factors of "a") 3. On the RHS of the X, write two numbers that multiply to "c" (ie. two factors of "c") 4. Cross multiply, and check to see if the two numbers can add to "b". Keep trying new combinations of numbers until you fine the "winning" numbers. Put "+" or "-" signs on the RIGHT HAND SIDE ONLY. Put the variable on the LEFT HAND SIDE ONLY. 5. Write the numbers in the X as factors. The top two numbers form the other factor.	Factor $2x^2 + 3x - 2$

Final Thoughts on Trinomial Factoring:

- Only 2 methods have been outlined in this section. There are even more, but these are the ones I like! You may have learned an alternative method last year, in fact.
- Every teacher has their preferred method.
- · Every student has their preferred method.
- YOU MAY CHOOSE WHICHEVER METHOD YOU WISH. YOU ONLY NEED TO KNOW ONE METHOD. PICK ONE AND MASTER IT!

Do not recycle the Polynomials notes!* It is absolutely imperative that you remember how to factor next year and years to come. You will not be taught again, but you will be expected to know how to do it. *I wouldn't recycle any of Math 10, if I were you, but especially not Chapter 3.

ASSIGNMENT # 7 pages 39-42 Questions #217-234 FMPC10 updated June 2018

Factoring $ax^2 + bx + c$ where $a \ne 1$

When the trinomial has an x^2 term with a coefficient other than 1 on the x^2 term, you cannot use the same method as you did when the coefficient is 1.

We will discuss 3 other methods: 1. Trial & Error 2. Decomposition

3. Algebra Tiles

Trial & Error:

Eg.1. Factor
$$2x^2 + 5x + 3$$
.
 $2x^2 + 5x + 3 = ()()$

We know the first terms in the brackets have product of $2x^2$

 $2x^2 + 5x + 3 = (2x)(x)$)

 $2x\ and\ x$ have a product of $2x^2$, place them at front of brackets.

The product of the second terms is 3. (1, 3 or -1, -3). These will fill in the second part of the binomials.

List the possible combinations of factors.

Decomposition:

Using this method, you will break apart the middle term in the trinomial, then factor by grouping.

To factor $ax^2 + bx + c$, look for two numbers with a product of ac and a sum of b.

Eg.1. Factor.
$$3x^2-10x+8$$

1. We see that $ac=3\times8=24$; and $b=-10$

We need two numbers with a product of 24, but add to -10...

-6 and -4.

$$3x^2-6x-4x+8$$

$$3x(x-2)-4(x-2)$$
2. Break apart the middle term.
3. Factor by grouping.
$$=(x-2)(3x-4)$$

Page 39 | Polynomials

FMPC10 updated June 2018

Eg.3. Factor $2x^2 + 7x + 6$ using algebra tiles.

Arrange the tiles into a rectangle (notice the "ones" are again grouped together at the corner of the x^2 tiles)

Side lengths are (2x + 3) and (x + 2) $\therefore 2x^2 + 7x + 6 = (2x + 3)(x + 2)$

Your notes here...

Factor the following if possible.		
$217. 2a^2 + 11a + 12$	$218. 5a^2 - 7a + 2$	$219.3x^2 - 11x + 6$
		1
		1
	:	1
	:	:

P a g e 40 | Polynomials

FMPC10 updated June 2018 Factor the following if possible. $220.2y^2 + 9y + 9$ $222.10x^2 - 17x + 3$ 221. 5y² - 14y - 3 $223.2x^2 + 3x + 1$ $224.6k^2 - 5k - 4$ $225.6y^2 + 11y + 3$ $226.3x^2 - 16x - 12$ $227.3x^3 - 5x^2 - 2x$ $228.9x^2 + 15x + 4$

Page 41 | Polynomials

FMPC10 updated June 2018

Factor the following if possible.

229. $21x^2 + 37x + 12$ 230. $6x^3 - 15x - x^2$ 231. $4t + 10t^2 - 6$ 232. $3x^2 - 22xy + 7y^2$ 233. $4c^2 - 4cd + d^2$ 234. $2x^4 + 7x^2 + 6$

Challenge Question

Write a simplified expression for the following diagram of algebra tiles.

What two binomials are being multiplied in the diagram above?

Write an equation using the binomials above and the simplified product.

Page 42 | Polynomials