Lesson 8

Lesson \#8 - Factoring Special Polynomials
Lesson Focus:

- To learn the shortcut for expanding $(a \pm b)^{2}$
- To learn to identify and factor the following special polynomials: Perfect Square Trinomial and Difference of Squares Binomials

Expanding $(a+b)^{2}$

$=(a+b)(a+b)$	$(a-b)^{2}$
$a^{2}+\underbrace{(a b+b a}+b^{2}$	
$=a^{2}+2 a b+b^{2}$	$(a-b)(a-b)$
	$a^{2}-a b-b a+b^{2}$
	$=a^{2}-2 a b+b^{2}$

- $1^{\text {st }}$ term + last

Note: A polynomial of the form $(a \pm b)^{2}$ is called a Perfect Square Trinomial. term are perfect

Example: Expand the following polynomials.

$$
a \quad b
$$

a) $(5 x-2)^{2}$
$25 x^{2}-10 x-10 x+4$ $25 x^{2}-\frac{20 x}{a x^{2}}+4_{2}$
Factoring Perfect Square Trinomial
 squares.

$$
\begin{array}{ll}
a=6 \quad b=7 \\
\text { b) }(6 x+7)^{2}
\end{array} \quad 36 x^{2}+84 x+49
$$

$$
\begin{aligned}
& (6 x+7)(6 x+7) \\
& 36 x^{2}+42 x+42 x+49
\end{aligned}
$$

$$
\begin{gathered}
36 x^{2}+84 x+49 \\
4 \uparrow \\
a x^{2} 2 \cdot a b \quad \uparrow_{2}
\end{gathered}
$$

- All perfect square trinomials (PSTs) can be factored into: $(a \pm b)^{2}$
- Therefore, if you can identify one, you can skip ALL FACTORING STEPS and go straight to the final answer. NO WORK NEED BE SHOWN.
Algebraically, we can spot one by first noticing the following: $a x^{2}+b x+c$
(1) a and c are both perfect squares
(a) check if the middle term $=2 \cdot \sqrt{a} \sqrt{c}$

Note: " a " and " c "MUST be positive for the polynomial to be a perfect square trinomial. WHY? when you

$$
\left.\begin{array}{l}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{array}\right\}
$$

recognize
pattern to save alpo
of time? of time!
square any number $=\oplus$

$$
\begin{gathered}
5^{2}=25 \\
(-5)^{2}=23
\end{gathered}
$$

Example. Factor the following completely. Check your answer by expanding (FOIL).
$\sqrt[3]{x^{2}}-6 x+\sqrt{9}$

$$
\begin{aligned}
& =x)^{2}=3 \\
& (x-3)^{2}
\end{aligned}
$$

b) $\sqrt{212 d^{2}+66 d}+\sqrt{9}$

$$
\begin{aligned}
& =11 d)=3 \\
& (111 d+3)^{2}
\end{aligned}
$$

Factoring Difference of Squares Binomials
subtract I 2 terms
A difference of squares binomial is a binomial in the form $a^{2}-b^{2}$.
For example: $x^{2}-81$

- ' a ' and ' b ' terms are both perfect squares

Some other examples:

$$
\left(x^{2}-64\right),\left(4 y^{2}-16\right),\left(w^{6}-1\right)
$$

- a ways have

$$
a \theta \text { sign. }
$$

Don't forget the Golden Rule of factoring! The first step of any factoring process is to ALWAYS...
Find the GFC and factor it out!

$$
\left(2 a^{2}-2 b^{2}\right)
$$

Let's Play..... SPOT THE DIFFERENCE OF SQUARES!!!!!

$$
2\left(a^{2}-b^{2}\right)
$$

le the part of the binomial that is
Circle the numbers of questions that are differences of squares. If it isn't, circle the part of the binomial that is preventing it from being a difference of squares. Lastly, factor each question.

$$
\begin{gathered}
1 . \sqrt{x^{2}}-\sqrt{4 y^{2}} \\
(x+2 y)(x-2 y) \\
24 x^{3}-16 \\
\text { notaperfect } \\
\text { square }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Factor } \\
& \left(x^{2}+4\right)\left(\sqrt{x^{2}}-\sqrt{4}\right) \\
& \left(x^{2}+4\right)(x+2)(x-2)
\end{aligned}
$$

A Difference of Squares

235. Write a simplified expression for the following diagram.

Solution: $x^{2}-2 x+2 x-4$

What two binomials are being multiplied in the diagram above?

$$
(x-2)(x+2)
$$

Write an equation using the binomials above and the simplified product.

236. Write a simplified expression for the
following diagram.

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
following diagram.

What two binomials are being multiplied above?

Factor the polynomial represented above by writing the binomials as a product (multiplication).
237. Write a simplified expression for the

P a g e $\mathbf{4 3}$ |Polynomials

Factoring a Difference of Squares: $a^{2}-b^{2}$

Conjugates: Sum of two terms and a difference of two terms.
Learn the pattern that exists for multiplying conjugates.
$(x+2)(x-2)=x^{2}-2 x+2 x-4=x^{2}-4 \quad$ The two middle terms cancel each other
out.

We can use this knowledge to quickly factor polynomials that look like $x^{2}-4$.

Eg.1. Factor $x^{2}-9$.
$=(x+3)(x-3) \quad$ Square root each term, place them in 2 brackets with opposite signs (+ and -).

Eg.2. Factor $100 a^{2}-81 b^{2}$
$=(10 a+9 b)(10 a-9 b)$ Square root each term, place them in 2 brackets with opposite signs (+ and -).

Factor the following completely.

Factor the following completely.	$240 . x^{2}-144$	$241.1-c^{2}$
$239 . a^{2}-25$		

I recognize a polynomial is a difference of squares because
\qquad

Factor the following completely.

Factoring a Perfect Square Trinomial

251. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.

Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
252. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
254. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.

PERFECT SQUARE TRINOMIALS

You may use the methods for factoring trinomials to factor trinomial squares but recognizing them could make factoring them quicker and easier.

Factor the following.

255. $x^{2}+14 x+49$	256. $4 x^{2}-4 x+1$	$257.9 b^{2}-24 b+16$
$258.64 m^{2}-32 m+4$	$259.81 n^{2}+90 n+25$	$260.81 x^{2}-144 x y+64 y^{2}$

[^0]Copyright Mathbeacon.com. Use with permission. Do not use after June 2019

[^0]: P a g e $\mathbf{4 7}$ |Polynomials

