Chemistry 11

Measurement 2:
 Unit Conversions \& Scientific Notation

Unit Converstions

A is a fraction or factor written so that the denominator and numerator are equivalent values with different units.

One of the most useful conversion factors allows the user to convert from the \qquad to the \qquad and vice versa.
Since 1 inch is exactly the same length as 2.54 cm , the factor may be expressed as:

These two lengths are identical so multiplication of a given length by the conversion factor will not change the length. It will simply express it in a different unit.

Now if you wish to determine how many centimetres are in a yard, you have two things to consider.

First, which of the two forms of the conversion factor will allow you to \qquad the imperial unit, converting it to a metric unit?

Second, what other conversion factors will you need to complete the task? Assuming you know, or can access, these equivalencies:

Figure 1.4.2 A ruler with both imperial and metric scales shows that 1 inch $=2.54 \mathrm{~cm}$.

1 yard =___feet and 1 foot $=\ldots$ inches ...your approach would be as follows:

Notice that as with the multiplication of any fractions, it is possible to \qquad

We've simply followed a numerator-to-denominator pattern to convert yards to feet to inches to cm .

The number of feet in a yard and inches in a foot are \qquad values. They are not things we measured. Thus they \qquad affect the number of significant figures in our answer.

This will be the case for any \qquad in which the numerator and denominator are in the same system (both metric or both imperial). As all three of the conversion factors we used are \qquad only the original value of 1.00 yards influences the significant figures in our answer. Hence we round the answer to three sig figs.

Example: How many minutes are there in 3480 seconds?

Both 60 s and 1 min are the same length of time. "Equal to", this is the converstion factor. Multiplying by the converstion facor did not change the VALUE fo the time.
However, the units are different after using the conversion factor:
we started with a LARGE number of small units and ended up with a small number of LARGE units.

The method of unit conversions uses conversion factors to change the units associated with an expression to a different set of units.
Every unit conversion problem has three major pieces of information which must be identified:
i) the unknown amount and its UNITS,
ii) the initial amount and its UNITS, and
iii) a conversion factor which relates or connects the initial UNITS to the UNITS of the unknown.

INCREDIBLY, VITALLY IMPORTANT NOTE!

In all the calculations which follow you must ALWAYS include the units, for they are the "major players" in the calculation. If you are tempted to omit or "forget about" the units, DON'T! The course you fail could be Chem 11!

Example: If a car can go 80 km in 1 h , how far can the car go in 8.5 h ?

Example: If 0.200 mL of gold has a mass of 3.86 g , what is the mass of 5.00 mL of gold ?

INITIAL AMOUNT

Example: If 0.200 mL of gold has a mass of 3.86 g , what is the volume occupied by 100.0 g of gold ?

CONVERSION STATEMENT

UNKNOWN AMOUNT

INITIAL AMOUNT

EXERCISE: Show FULL WORKING OUT on THIS PAGE in the space provided below.
2. Solve the following using the method of unit conversions.
a) If there are 6.02×10^{23} atoms in 1 mol of atoms, how many atoms are there in 5.5 mol of atoms?
b) If one mole of a gas has a volume of 22.4 L , how many moles are there in 25.0 L of gas?
c) If one mole of nitrogen has a mass of 28 g , how many moles of nitrogen gas are in 7.0 g of nitrogen gas?
d) How many seconds must an electrical current of 35 coulombs/s flow in order to deliver 200.0 coulombs?
e) A quiet sound exerts a pressure of $4 \times 10^{-8} \mathrm{kPa}$ (" kPa " $=$ kilopascals, an SI pressure unit). What is this pressure in atmospheres if 1 atmosphere is 101.3 kPa ?
f) A large nugget of naturally occurring silver metal has a mass of 3.20×10^{4} troy ounces. What is the mass in kilograms if 1 troy ounce is equivalent to 0.0311 kg ?
g) A reaction is essentially complete in $5.0 \times 10^{-4} \mathrm{~s}$. If one millisecond (1 ms) equals $10^{-3} \mathrm{~s}$, how many milliseconds does the reaction take?
h) If 1 mol of octane produces 5450 kJ of heat when burned, how many moles of octane must be burned to produce 15100 kJ of heat?
i) Our fingers can detect a movement of 0.05 micron. If 1 micron is $10^{-3} \mathrm{~mm}$, what is this movement expressed in millimetres (mm) ?
j) If concentrated hydrochloric acid has a concentration of $11.7 \mathrm{~mol} / \mathrm{L}$, what volume of hydrochloric acid is required in order to have 0.0358 mol of hydrochloric acid?

What happens when there is more than one converstion factor involved in a problem?

Multiple Unit Converstions

REMEMBER: your conversion factor must include a fraction where the numerator (top) and denominator (bottom) are equivalent values with different units.

Example: If eggs are $\$ 1.44 /$ doz and if there are 12 eggs/doz, how many individual eggs can be bought for $\$ 4.32$?
UNKNOWN AMOUNT:
INITIAL AMOUNT:
CONVERSION FACTORS:

OVERALL CONVERSTION REQUIRED:

Example: The gas tank of a Canadian tourist holds 39.4 L of gas. If 1 L is equal to 0.264 gal in the US, and gas is $\$ 1.26 / \mathrm{gal}$, how much will it cost to fill up south of the border?

UNKNOWN AMOUNT:
INITIAL AMOUNT:
CONVERSTION FACTORS:

OVERALL CONVERSTION REQUIRED:

EXERCISES: Show FULL WORKING OUT on THIS PAGE in the space provided below.
3. An old barometer hanging on the wall of a mountain hut has a reading of 27.0 inches of mercury. If 1 inch of mercury equals 0.0334 atm ("atmospheres") and $1 \mathrm{~atm}=101.3 \mathrm{kPa}$ ("kilopascals"), what is the pressure reading of the barometer, in kilopascals?
4. It requires 334 kJ of heat to melt 1 kg of ice.
(a) The largest known iceberg had a volume of about $3.1 \times 10^{13} \mathrm{~m}^{3}$. How much heat was required to melt the iceberg if $1 \mathrm{~m}^{3}$ of ice has a mass of 917 kg ?
(b) The explosive "TNT" releases $1.51 \times 10^{4} \mathrm{~kJ}$ of energy for every kilogram of TNT which explodes. Provided that all the energy of an explosion went into melting the ice, how many kilograms of TNT would be needed to melt the iceberg in part (a) of this question?

Show FULL WORKING OUT on THIS PAGE in the space provided below.
5. Sugar costs $\$ 0.980 / \mathrm{kg}$. $1 \mathrm{t}=1000 \mathrm{~kg}$. How many tonnes (" t ") of sugar can you buy for $\$ 350$?
6. The Cullinan diamond, the largest diamond ever found, had an uncut volume of 177 mL . If 1 mL of diamond has a mass of 3.51 g and 1 carat $=0.200 \mathrm{~g}$, how many carats was the Cullinan diàmond?
7. How many kilometres ("km") will a car travelling at $120 \mathrm{~km} / \mathrm{h}$ go in: (a) 0.25 h ? (b) 12 min ?
8. Solve the following, using the fact that beakers cost $\$ 8.40$ per dozen.
(a) Harry drops 3 dozen beakers. How much will the Chemistry teacher charge Harry?
(b) Harry drops another 5 dozen beakers (clumsy!). If Burger Bob's hamburgers cost $\$ 1.50$ each, how many hamburgers could clumsy Harry have bought for the same amount of money as he has to pay for the second batch of beakers?
(c) Harry does not learn very quickly, and breaks a third batch of beakers. If he has to pay $\$ 13.30$, what is the number of beakers he breaks the third time? (Express your answer in actual numbers of beakers, rather than in "dozens of beakers".)

Converting Within the Metric System

Measures	Unit Name	Symbol
length	metre	m
mass	gram	g
volume	litre	L
time	second	s

The metric system is based on powers of \qquad .
The power of 10 is indicated by a simple \qquad . Table 1.4.1 is a list of SI prefixes.
You will need to memorize from "nano" 10^{-9} to "giga" 10^{9}.
You should highlight these.
Metric conversions require either one or two steps. You will recognize a one-step metric conversion by the presence of a \qquad in the question.

The common base units in the metric system include: m, g, L and s.

SOME IMPORTANT EQUIVALENCES

$$
\begin{aligned}
1 \mathrm{~mL} & =1 \mathrm{~cm}^{3} \\
1 \mathrm{~m}^{3} & =10^{3} \mathrm{~L} \\
1 \mathrm{t} & =10^{3} \mathrm{~kg}
\end{aligned}
$$

Example: re-write 5 kilograms using PREFIX and UNIT SYMBOLS and the correct EXPONENTIAL EQUIVALENT

Table 1.4.1 SI Prefixes

Prefix	Symbol	$10^{\mathbf{n}}$
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	z	10^{-21}
yocto	y	10^{-24}

EXERCISES:

11. Re-write the following using PREFIX and UNIT SYMBOLS, and EXPONENTIAL EQUIVALENTS.
(a) 2.5 centimetres
(c) 25.2 millimoles
(e) 0.25 megalitres
(b) 1.3 kilograms
(d) 5.1 decigrams
(f) 6.38 micrograms
a)
c)
e) \qquad
b) \qquad
d)
f)
f
12. Re-write the following using WRITTEN PREFIXES and UNITS, and EXPONENTIAL EQUIVALENTS.
(a) 2.5 mm
(c) 1.9 kmol
(e) 9.94 cg
(b) 6.5 dL
(d) 4 Mt
(f) $1.25 \mu \mathrm{~s}$
a)
c)
e) \qquad
b) \qquad
d)
\qquad
f) \qquad
13. Re-write the following using PREFIX SYMBOLS, and WRITTEN PREFIXES and UNITS.
(a) $4.5 \times 10^{-3} \mathrm{~mol}$
(c) $0.50 \times 10^{-6} \mathrm{~L}$
(e) $8.85 \times 10^{6} \mathrm{t}$
(b) $1.6 \times 10^{3} \mathrm{~m}$
(d) $2.68 \times 10^{-1} \mathrm{~g}$
(f) $7.25 \times 10^{-2} \mathrm{~m}$
a)
c)
e) \qquad
b) \qquad
d)
f) \qquad

One step metric conversions involve \qquad (metres, litres, grams,

One \& Two-Step Converstions or seconds) being converted to a \qquad or a prefixed unit being converted to a base unit.

Metric conversions involve using unit conversions between prefix symbols and exponential equivalents.
EXAMPLES: (a) Write a conversion statement between cm and m .
Since " c " stands for " $10^{-2 \text { " }}$ then $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$.
(b) Write a conversion statement between $\mathbf{m s}$ and \mathbf{s}.

Since " m " stands for " $10^{-3 "}$ then $1 \mathrm{~ms}=10^{-3} \mathrm{~s}$.

Sample Problems - One-Step Metric Conversions

1. Convert 9.4 nm into m .

What to Think about

1. In any metric conversion, you must decide whether you need one step or two. There is a base unit in the question and only one prefix. This problem requires only one step. Set the units up to convert nm into m.
Let the units lead you through the problem. You are given 9.4 nm , so the conversion factor must have nm in the denominator so it will cancel.
2. Now determine the value of nano and fill it in appropriately. $\mathbf{1 n m}=\mathbf{1 0}^{-9} \mathrm{~m}$ Give the answer with the appropriate number of significant figures and the correct unit.
Because the conversion factor is a defined equality, only the given value affects the number of sig figs in the answer.

How to Do It

EXERCISE: Show FULL WORKING OUT on THIS PAGE in the space provided below.
15. Write conversion statements between each of the following.
(a) kg and g
(d) dm and m
(g) kL and L
(j) cL and L
(b) Mm and m
(e) cs and s
(h) μ sands
(k) dmol and mol
(c) $\mu \mathrm{L}$ and L
(f) mmol and mol
(i) Mg and g
(I) mg and g

Two factors will be required any time there are
\qquad in the question.

In a two-step metric conversion, you must always -.

Example: How many micrometres are there in 5 cm ?

Sample Problems - Two-Step Metric Conversions

1. Convert $6.32 \mu \mathrm{~m}$ into km .

What to Think about

1. This problem presents with two prefixes so there must be two steps.
The first step in such a problem is always to convert to the base unit. Set up the units to convert from $\mu \mathrm{m}$ to m and then to km .
2. Insert the values for $1 \mu \mathrm{~m}$ and 1 km .
$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$
$1 \mathrm{~km}=10^{3} \mathrm{~m}$
3. Give the answer with the correct number of significant figures and the correct unit.

How to Do It

Practice Problems - One- and Two-Step Metric Conversions

1. Convert 16 s into ks .
2. Convert 75000 mL into L .
3. Convert 457 ks into ms .
4. Convert $5.6 \times 10^{-4} \mathrm{Mm}$ into dm .

EXERCISES: Show FULL WORKING OUT on THIS PAGE in the space provided below.
16. (a) If $1 \mathrm{mg}=10^{-3} \mathrm{~g}$ and $1 \mathrm{Mg}=10^{6} \mathrm{~g}$, how many milligrams are there in 0.25 Mg ?
(b) If $1 \mu \mathrm{~s}=10^{-6} \mathrm{~s}$ and $1 \mathrm{cs}=10^{-2} \mathrm{~s}$, how many centiseconds are there in $10 \mu \mathrm{~s}$?
(c) If $1 \mathrm{~mm}=10^{-3} \mathrm{~m}$ and $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$, how many millimetres are there in 15.8 cm ?
(d) If $1 \mathrm{~kg}=10^{3} \mathrm{~g}$ and $1 \mathrm{mg}=10^{-3} \mathrm{~g}$, how many kilograms are there in 250 mg ?
(e) If $1 \mathrm{dL}=10^{-1} \mathrm{~L}$ and $1 \mathrm{~kL}=10^{3} \mathrm{~L}$, how many decilitres are there in 0.5 kL ?
17. Convert the following
(a) 3 s into milliseconds
(f) 2 L into decilitres
(b) 50.0 mL into litres
(g) 7μ s into milliseconds
(c) 2 L into microlitres
(h) 51 kg into milligrams
(d) 25 kg into grams
(i) 3125μ L into kilolitres
(e) 3 Mm into metres
(j) $1.7 \mu \mathrm{~g}$ into centigrams

A derived unit is

Derived Unit

Conversions
Units like those used to express rate $(\mathrm{km} / \mathrm{h})$ or density (g / mL) are good examples of derived units.

EXAMPLE: The heat change occurring when the temperature of a water sample increases is given by $\Delta H=c \cdot m \cdot \Delta T$

Therefore, \mathbf{c}, is a \qquad , having derived units, found by combinding three other quantities (
\qquad
\qquad) and their units.

EXERCISE: Show FULL WORKING OUT on THIS PAGE in the space provided below.

29. Find the derived value and units for
(a) the molar concentration, c, using the equation $c=\frac{\boldsymbol{n}}{\boldsymbol{v}}$, where: $\boldsymbol{n}=0.250 \mathrm{~mol}$ and $\boldsymbol{V}=0.500 \mathrm{~L}$.
(b) the Universal Gas Constant, R, using the equation $R=\frac{P \cdot V}{n \cdot T}$,
i) where $\boldsymbol{P}=1 \mathrm{~atm}, \boldsymbol{V}=22.4 \mathrm{~L}, \boldsymbol{n}=1 \mathrm{~mol}$ and $\boldsymbol{T}=273 \mathrm{~K}$ (K is the temperature on the Kelvin scale.
ii) where $\boldsymbol{P}=202.6 \mathrm{kPa}, \boldsymbol{V}=24.45 \mathrm{~L}, \boldsymbol{n}=2 \mathrm{~mol}$ and $\boldsymbol{T}=298 \mathrm{~K}$.
(c) the entropy change for the boiling of water, $\Delta \mathrm{S}$, using the equation $\Delta H=T \cdot \Delta S$, where: $\Delta H=44.0 \mathrm{~kJ}$ and $\boldsymbol{T}=373 \mathrm{~K}$. (Hint: you will have to rearrange the equation first.)
(d) the kinetic energy of hydrogen gas at $0^{\circ} \mathrm{C}, \boldsymbol{K E}$, using the equation $K E=\frac{1}{2} \boldsymbol{m} \cdot \boldsymbol{v}^{2}$, where: $\boldsymbol{m}=3.35 \times 10^{-27} \mathrm{~kg}$ and $\boldsymbol{v}=1692 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Example: Express $5 \mathrm{Mg} / \mathrm{mL}$ in kolograms/litre

Sample Problem — Derived Unit Conversions

Convert $55.0 \mathrm{~km} / \mathrm{h}$ into m/s

What to Think about

1. The numerator requires conversion of a prefixed metric unit to a base metric unit. This portion involves one step only and is similar to sample problem one above.
2. The denominator involves a time conversion from hours to minutes to seconds. The denominator conversion usually follows the numerator.
Always begin by putting all conversion factors in place using units only. Now that this has been done, insert the appropriate numerical values for each conversion factor.
3. As always, state the answer with units and ro
figures (in this case, three).

How to Do It

Practice Problems - Derived Unit Conversions

1. Convert $2.67 \mathrm{~g} / \mathrm{mL}$ into kg / L. Why has the numerical value remained unchanged?
2. Convert the density of neon gas from $8.9994 \times 10^{-4} \mathrm{mg} / \mathrm{mL}$ into kg / L.
3. Convert $35 \mathrm{mi} / \mathrm{h}$ (just over the speed limit in a U.S. city) into m / s. (Given: 5280 feet $=1$ mile)

Use of a Derived Unit as a Conversion Factor

A quantity expressed with a derived unit may be used to convert a unit that measures one thing into a unit that measures something \qquad .
The most common examples are the use of rate to convert between \qquad and \qquad and the use of \qquad to convert between \qquad and \qquad .

The keys to this type of problem are determining which form of the conversion factor to use and where to start.

Example:

Suppose we wish to use the speed of sound ($330 \mathrm{~m} / \mathrm{s}$) to determine the time (in hours) required for an explosion to be heard 5.0 km away.
It is always a good idea to begin any conversion problem by considering what we are trying to find?
Begin with the end in mind. This allows us to decide where to begin.
Do we start with 5.0 km or $330 \mathrm{~m} / \mathrm{s}$?

$$
\text { First, consider: are you attempting to convert a unit } \rightarrow \text { unit, or a } \frac{\text { unit }}{\text { unit }} \rightarrow \frac{\text { unit }}{\text { unit }} ?
$$

The answer is \qquad begin with the single unit: km.
The derived unit will serve as the conversion factor.

Second, which of the two possible forms of the conversion factor will allow conversion of a distance in km into a time in h ?

Sample Problem — Use of Density as a Conversion Factor

What is the volume in L of a 15.0 kg piece of zinc metal? (Density of $\mathrm{Zn}=7.13 \mathrm{~g} / \mathrm{mL}$)

What to Think about

1. Decide what form of the conversion factor to use: g / mL or the reciprocal, mL / g.
Always begin by arranging the factors using units only. As the answer will contain one unit, begin with one unit, in this case, kg .
2. Insert the appropriate numerical values for each conversion factor.
In order to cancel a mass and convert to a volume, use the reciprocal of the density:

$$
\frac{1 \mathrm{~mL}}{7.13 \mathrm{~g}}
$$

3. Calculate the answer with correct unit and number of significant digits.

How to Do It

Practice Problems - Use of Rate and Density as Conversion Factors

1. The density of mercury metal is $13.6 \mathrm{~g} / \mathrm{mL}$. What is the mass of 2.5 L ?
2. The density of lead is $11.2 \mathrm{~g} / \mathrm{cm}^{3}$. The volumes $1 \mathrm{~cm}^{3}$ and 1 mL are exactly equivalent. What is the volume in L of a 16.5 kg piece of lead?
3. The speed of light is $3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$. Sunlight takes 8.29 min to travel from the photosphere (light-producing region) of the Sun to Earth. How many kilometres is Earth from the Sun?

If a unit is \qquad or cubed, it may be cancelled in one of two ways.

Conversions

 Exvolving Units with Kind of Derived Unit)It may be written more than once to convey that it is being multiplied by itself or it may be placed in brackets with the exponent applied to the number inside the brackets as well as to the unit.

Hence, the use of the equivalency $1 \mathrm{~L}=1 \mathrm{dm}^{3}$ to convert $1 \mathrm{~m}^{3}$ to L might appear in either of these formats:

$$
1 \mathrm{~m}^{3} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}} \times \frac{1 \mathrm{~L}}{1 \mathrm{dm}^{3}} \quad \mathbf{O R}
$$

Sample Problem - Use of Conversion Factors Containing Exponents

Convert $0.35 \mathrm{~m}^{3}$ (cubic metres) into $\mathrm{mL} .\left(1 \mathrm{~mL}=1 \mathrm{~cm}^{3}\right)$

What to Think about

1. The unit cm must be cancelled three times. Do this by multiplying the conversion factor by itself three times or through the use of brackets.
2. Once the units have been aligned correctly, insert the appropriate numerical values.
3. Calculate the answer with the correct unit and number of significant figures.

How to Do It

Using Scientific Notation

-2.3445×10^{3}

Mantissa Exponent

Because it deals with atoms, and they are so incredibly small, the study of chemistry is notorious for using very large and very tiny numbers. For example, if you determine the total number of atoms in a sample of matter, the value will be very large. If, on the other hand, you determine an atom's diameter or the mass of an atom, the value will be extremely small. The method of reporting an ordinary, expanded number in scientific notation is very handy for both of these things.
\qquad refers to the method of representing numbers in \qquad
form. Exponential numbers have two parts. Consider the following example:
24500 becomes 2.4510^{4} in scientific notation
Convention states that the first portion of a value in scientific notation should always be expressed as a number
This portion is called the mantissa or the -
This portion is called the mantissa or the \qquad .
The second portion is the \qquad raised to some power. It is called the ordinate or the \qquad portion.

$$
\text { mantissa } \rightarrow 2.45 \times 10^{4} \text { and } 2.45 \times 10_{-}^{4} \leftarrow \text { ordinate }
$$

A \qquad exponent in the ordinate indicates a \qquad in scientific notation, while a \qquad exponent indicates a \qquad
In fact the exponent indicates the number of 10 s that must be multiplied together to arrive at the number represented by the scientific notation. If the exponents are negative, the exponent indicates the number of tenths that must be multiplied together to arrive at the number.

In other words, the exponent indicates the number of \qquad in the mantissa must be moved to correctly arrive at the \qquad notation (also called standard notation) version of the number.

Scientific Notation to Numbers

Scientific Notation involves moving decimals.

A exponent indicates the number
of places the decimal must be moved to the \qquad while a \qquad xponent indicates the number of places the decimal must be moved to the
\qquad .
5.8×10^{-4}
$=00005.8$
$=0.00058 \mathrm{~V}$

Because the exponent is a Negative 4, move the decimal point 4 places to the left. Add in Zeroes to fill the empty gaps.

Quick Check

1. Change the following numbers from scientific notation to expanded notation.
(a) $2.75 \times 10^{3}=$ \qquad
(b) $5.143 \times 10^{-2}=$ \qquad
2. Change the following numbers from expanded notation to scientific notation.
(a) $69547=$ \qquad
(b) $0.00168=$ \qquad

Multiplication and Division in Scientific Notation
To \qquad two numbers in scientific notation, we multiply the \qquad and state their product multiplied by 10, raised to a power that is the \qquad .

$$
\left(A \times 10^{a}\right) \times\left(B \times 10^{b}\right)=(A \times B) \times 10^{(a+b)}
$$

To divide two numbers in scientific notation, we divide one mantissa by the other and state their quotient multiplied by 10 , raised to a power that is the difference between the exponents.

$$
\left(A \times 10^{a}\right) \div\left(B \times 10^{b}\right)=(A \div B) \times 10^{(a-b)}
$$

Sample Problems - Multiplication and Division Using Scientific Notation

Solve the following problems, expressing the answer in scientific notation.

1. $\left(2.5 \times 10^{3}\right) \times\left(3.2 \times 10^{6}\right)=$
2. $\left(9.4 \times 10^{-4}\right) \div\left(10^{-6}\right)=$

What to Think about

Question 1

1. Find the product of the mantissas.
2. Raise 10 to the sum of the exponents to determine the ordinate.
3. State the answer as the product of the new mantissa and ordinate.

Question 2

1. Find the quotient of the mantissas. When no mantissa is shown, it is assumed that the mantissa is 1 .
2. Raise 10 to the difference of the exponents to determine the ordinate.
3. State the answer as the product of the mantissa and ordinate.

How to Do lt

Practice Problems - Multiplication and Division Using Scientific Notation

Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers. Compare your method of solving with a calculator with that of another student.

1. $\left(4 \times 10^{3}\right) \times\left(2 \times 10^{4}\right)=$ \qquad 4. $10^{9} \div\left(5.0 \times 10^{6}\right)=$ \qquad
2. $\left(9.9 \times 10^{5}\right) \div\left(3.3 \times 10^{3}\right)=$ \qquad 5. $\left[\left(4.5 \times 10^{12}\right) \div\left(1.5 \times 10^{4}\right)\right] \times\left(2.5 \times 10^{-6}\right)=$ \qquad
3. $\left[\left(3.1 \times 10^{-4}\right) \times\left(6.0 \times 10^{7}\right)\right] \div\left(2.0 \times 10^{5}\right)=$ \qquad

Addition and Subtraction in Scientific Notation

Remember that a number in proper scientific notation will always have a mantissa between \qquad and \qquad . Sometimes it becomes necessary to \qquad a decimal in order to express a number in proper scientific notation.

The number of places shifted by the decimal is indicated by an equivalent change in the value of the exponent. If the decimal is shifted \qquad , the exponent becomes \qquad shifting the decimal to the \qquad causes the exponent to become \qquad .

Another way to remember this is if the mantissa becomes smaller following a shift, the exponent becomes larger. Consequently, if the exponent becomes larger, the mantissa becomes smaller. Consider $A B . C \times 10^{x}$: if the decimal is shifted to change the value of the mantissa by 10^{n} times, the value of x changes $-n$ times.

For example,

A number such as 18235.0×10^{2} (1823 500 in standard notation) requires the decimal to be \qquad places to the \qquad to give a mantissa between 1 and 10 , that is 1.82350 .
A \qquad shift \qquad places, means the exponent in the ordinate becomes \qquad
(from 10^{2} to 10^{6}).
The correct way to express 18235.0×10^{2} in scientific notation is 1.82350×10^{6}.
Notice the new mantissa is 10^{4} smaller, so the exponent becomes 4 numbers larger.

Quick Check

Express each of the given values in proper scientific notation in the second column. Now write each of the given values from the first column in expanded form in the third column. Then write each of your answers from the second column in expanded form. How do the expanded answers compare?

Given Value		Proper Notation	Expanded Form	Expanded Answer
1.	6014.51×10^{2}			
2.	0.0016×10^{7}			
3.	38325.3×10^{-6}			
4.	0.4196×10^{-2}			

When adding or subtracting numbers in scientific notation, it is important to realize that we add or subtract only the mantissa. Do not add or subtract the exponents!

Shift the decimal to obtain the same value for the exponent in the ordinate of both numbers to be added or subtracted. Then simply sum or take the difference of the mantissas. Convert back to proper scientific notation when finished.

Sample Problems - Addition and Subtraction in Scientific Notation

Solve the following problems, expressing the answer in proper scientific notation.

1. $\left(5.19 \times 10^{3}\right)-\left(3.14 \times 10^{2}\right)=$
2. $\left(2.17 \times 10^{-3}\right)+\left(6.40 \times 10^{-5}\right)=$

What to Think about

Question 1

1. Begin by shifting the decimal of one of the numbers and changing the exponent so that both numbers share the same exponent.
For consistency, adjust one of the numbers so that both numbers have the larger of the two ordinates.
The goal is for both mantissas to be multiplied by 10^{3}. This means the exponent in the second number should be increased by one. Increasing the exponent requires the decimal to shift to the left (so the mantissa becomes smaller).
2. Once both ordinates are the same, the mantissas are simply subtracted.

Question 1 - Another Approach

1. It is interesting to note that we could have altered the first number instead. In that case, 5.19×10^{3} would have become 51.9×10^{2}.
2. In this case, the difference results in a number that is not in proper scientific notation as the mantissa is greater than 10.
3. Consequently, a further step is needed to convert the answer back to proper scientific notation. Shifting the decimal one place to the left (mantissa becomes smaller) requires an increase of 1 to the exponent.

How to Do It

Practice Problems - Addition and Subtraction in Scientific Notation

Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers. Compare your use of the exponential function on the calculator with that of a partner.

1. 8.068×10^{8}
-4.14×10^{7}
2. 6.228×10^{-4}
$+4.602 \times 10^{-3}$
3. 49.001×10^{1}
$+\quad 10^{-1}$

Scientific Notation and Exponents

Occasionally a number in scientific notation will be raised to some power. When such a case arises, it's important to remember when one exponent is raised to the power of another, the \qquad by one another.
Consider a problem like $\left(10^{3}\right)^{2}$. This is really just $(10 \times 10 \times 10)^{2}$ or $(10 \times 10 \times 10 \times 10 \times 10$ $\times 10$). So we see this is the same as $10^{(3 \times 2)}$ or 10^{6}.

Topic Review:

Solve the following problems, expressing the answer in scientific notation, without the use of a calculator. Repeat the problems with a calculator and compare your answers.

1. $\left(10^{3}\right)^{5}$
2. $\left(2 \times 10^{2}\right)^{3}$
3. $\left(5 \times 10^{4}\right)^{2}$
4. $\left(3 \times 10^{5}\right)^{2} \times\left(2 \times 10^{4}\right)^{2}$
5. Convert the following numbers from scientific notation to expanded notation and vice versa (be sure the scientific notation is expressed correctly).

Scientific Notation	Expanded Notation
3.08×10^{4}	
	960
4.75×10^{-3}	0.000484
0.0062×10^{5}	

6. Give the product or quotient of each of the following problems (express all answers in proper form scientific notation). Do not use a calculator.
(a) $\left(8.0 \times 10^{3}\right) \times\left(1.5 \times 10^{6}\right)=$
(b) $\left(1.5 \times 10^{4}\right) \div\left(2.0 \times 10^{2}\right)=$
(c) $\left(3.5 \times 10^{-2}\right) \times\left(6.0 \times 10^{5}\right)=$
(d) $\left(2.6 \times 10^{7}\right) \div\left(6.5 \times 10^{-4}\right)=$
7. Give the product or quotient of each of the following problems (express all answers in proper form scientific notation). Do not use a calculator.
(a) $\left(3.5 \times 10^{4}\right) \times\left(3.0 \times 10^{5}\right)=$
(b) $\left(7.0 \times 10^{6}\right) \div\left(1.75 \times 10^{2}\right)=$
(c) $\left(2.5 \times 10^{-3}\right) \times\left(8.5 \times 10^{-5}\right)=$
(d) $\left(2.6 \times 10^{5}\right) \div\left(6.5 \times 10^{-2}\right)=$
8. Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers.
(a) 4.034×10^{5} -2.12×10^{4}
(b) 3.114×10^{-6}
(c) 26.022×10^{2}
$+2.301 \times 10^{-5}$
$+7.04 \times 10^{-1}$
9. Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers.
(a) 2.115×10^{8}
(b) 9.332×10^{-3}
$+6.903 \times 10^{-4}$
(c) 68.166×10^{2}
$+\quad \times 10^{-1}$
10. Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.
(a) $\left(10^{-4}\right)^{3}$
(b) $\left(4 \times 10^{5}\right)^{3}$
(c) $\left(7 \times 10^{9}\right)^{2}$
d. $\left(10^{2}\right)^{2} \times(2 \times 10)^{3}$
11. Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.
(a) $\left(6.4 \times 10^{-6}+2.0 \times 10^{-7}\right) \div\left(2 \times 10^{6}+3.1 \times 10^{7}\right)$
(b) $\frac{3.4 \times 10^{-17} \times 1.5 \times 10^{4}}{1.5 \times 10^{-4}}$
(c) $\left(2 \times 10^{3}\right)^{3} \times\left[\left(6.84 \times 10^{3}\right) \div\left(3.42 \times 10^{3}\right)\right]$
(d) $\frac{\left(3 \times 10^{2}\right)^{3}+\left(4 \times 10^{3}\right)^{2}}{1 \times 10^{4}}$
