\qquad Block \qquad

1. Draw a net to be used for finding the surface area of a rectangular prism.
2. If the surface area of a cylinder is $400 \mathrm{~m}^{2}$, what would be the surface area of a cylinder that is tripled in size?
3. Draw a net to be used for finding the surface area of a rectangular pyramid.
4. If the surface area of a cylinder is $400 \mathrm{~m}^{2}$, what would be the surface area of the cylinder in square centimetres?

Conversions:
a) $2.2 \mathrm{~m}=$ \qquad mm
b) $135 \mathrm{ft}=$ \qquad in
c) $12500 \mathrm{lb}=$ \qquad tons
d) $3.75 \mathrm{lb}=$ \qquad 02
e) $168 \mathrm{~g}=$ \qquad kg (3 decimals)
f) $212 \mathrm{in}=$ \qquad yd (2 decimals)

Conversions: (nearest tenth)
a) $175 \mathrm{in}=\square \mathrm{m}$
\qquad m
b) $13 \mathrm{mi}=$ \qquad m
c) $126 \mathrm{oz}=\ldots \mathrm{kg}$
d) $4.3 \mathrm{~km}=$ \qquad in
5. Estimate the volume of air in this room. Show how you arrived at this value. Include units.
6. Find the radius of a sphere that has a volume of 2304π.
7. Find the radius of a hemisphere that has a surface area of 588π.
8. A volleyball has a circumference of 26 inches. What is the volume of the smallest cube that will hold this ball? (Nearest whole unit)
9. A cylinder has a surface area of $503 \mathrm{~cm}^{2}$. If the height is four times greater than the radius, what is the height of the cylinder? (Nearest tenth)

10. Calculate the surface area of stone required to cover the pool (excluding bottom). Nearest 100 square cm .
11. Calculate the volume of water required to fill the pool to the nearest $1000 \mathrm{~cm}^{3}$.
12. Water has a mass of 1 gram per cm^{3}, or millilitre. What is the mass, in kilograms, of the water in the pool? In tonnes?
13. What is the volume in cubic metres. Answer to the nearest tenth.

14. If you need to paint the shape to the left, what is the total area, in square inches, to be painted? (excluding the bottom)
15. One quart to paint covers 88 square feet. How many cans will you need to purchase?
16. Find the volume of the triangular prism to the nearest $100 \mathrm{in}^{3}$.
17. If the prism is reduced by a factor of $\frac{1}{3}$, what would be the approximate volume to the nearest $100 \mathrm{in}^{3}$.

18. Find the surface area of the cylinder to the left. Nearest tenth of a square metre.
19. Find the volume of the cylinder to the left. Nearest tenth of a cubic metre.

Multiple Choice Section:

5. 4 yd . is equivalent to:
A. $144^{\prime \prime}$
B. 16 ft .
C. 0.05 mi .
D. 320 cm
6. $\quad 12000 \mathrm{ft}$. is equivalent to:
A. $120000^{\prime \prime}$
B. 368000 cm
C. 4200 yd .
D. 2.27 mi .
7. 3 mi . is equivalent to:
A. 4600 m
B. 5400 yd .
C. 4.83 km
D. 15600 ft .
8. 12 m is equivalent to:
A. 0.12 km
B. 11 yd .
C. 19308 mi .
D. $472.44^{\prime \prime}$
9. 400 m is equivalent to:
A. 0.25 mi .
B. 0.04 km
C. 400 yd
D. $4000^{\prime \prime}$
10. Five students measure their height using different units. Andrew is 176 cm , Brittney is 5 ' 4 ', Calvin is 1.8 yards, Don is 54 inches, and Elisha is 1.6 metres. From shortest to tallest, the order of the students is:
A. Don, Andrew, Brittney, Calvin, Elisha
B. Don, Elisha, Brittney, Calvin, Andrew
C. Brittney, Elisha, Calvin, Don, Andrew
D. Calvin, Andrew, Don, Brittney, Elisha
11. A homeowner is laying sod in her lawn. The lawn is a rectangle with dimensions of $28^{\prime} \times 18^{\prime}$. If one piece of sod is a rectangle with dimensions of $60 \mathrm{~cm} \times 40 \mathrm{~cm}$, approximately how many pieces of sod should the homeowner order?
A. 195
B. 245
C. 295
D. 345
12. The surface area of the rectangular pyramid is:
A. $478 \mathrm{~cm}^{2}$
B. $483 \mathrm{~cm}^{2}$
C. $488 \mathrm{~cm}^{2}$
D. $493 \mathrm{~cm}^{2}$

13. The slant height of the cone is:
A. 11 m
B. 12 m

Cone Data
C. 13 m
D. 14 m

$$
\begin{aligned}
\mathrm{SA} & =320.44 \mathrm{~m}^{2} \\
\mathrm{~V} & =347.57 \mathrm{~m}^{3}
\end{aligned}
$$

14. A square pyramid has a base measuring 5 ft . by 5 ft . The height of the pyramid, from the centre of the base to the apex is 7 ft . Calculate the surface area of the pyramid.
A. $99 \mathrm{ft}^{2}$
B. $104 \mathrm{ft}^{2}$
C. $109 \mathrm{ft}^{2}$
D. $114 \mathrm{ft}^{2}$
15. A cylindrical water tank with an open top has a volume of $5702 \mathrm{~m}^{3}$ and a radius of 11 m . Calculate the height of the tank.
A. 14 m
B. 15 m
C. 16 m
D. 17 m
16. The volume of the 3-D object shown is:
A. $905 \mathrm{~cm}^{3}$
B. $910 \mathrm{~cm}^{3}$
C. $915 \mathrm{~cm}^{3}$
D. $920 \mathrm{~cm}^{3}$

17. The surface area of the 3-D object shown is:
A. $2060 \mathrm{~cm}^{2}$
B. $2065 \mathrm{~cm}^{2}$
C. $2070 \mathrm{~cm}^{2}$
D. $2075 \mathrm{~cm}^{2}$

\qquad Block \qquad
-Answer Key

1.	2.	3. $3600 \mathrm{~m}^{2}$
4. $4000000 \mathrm{~cm}^{2}$	2200 mm	4.4 m
	1620 in	20917 m
	6.25 tons	3.6 kg
	60 oz	169327.5 in OR
	0.168 kg	169291.3
9900	5.89 yd	
5. 9960 cubic feet $/ 270 \mathrm{~m}^{3}$	6. 12 units	7. 14 units
8. $567 \mathrm{in}^{3}$	9. $16 \mathrm{~cm} \longrightarrow 7.787$-tonnes	$10.140700 \mathrm{~cm}^{2}$ L $21800 \mathrm{in}^{2}$
11. $7787000 \mathrm{~cm}^{3}$	12. 7787 kq	$13.7 .8 \mathrm{~m}^{3}$
14. 4597 square inches	15. Purchase 1 can ($31.9 \mathrm{ft}^{2}$) to cover)	16. $16800 \mathrm{in}^{3}$
$17.600 \mathrm{in}^{3}$	18. $24.1 \mathrm{~m}^{2}$	19. $9.0 \mathrm{~m}^{3}$

5. A ,
6. A
7. A
8. D
9. B
10. D
11. C
12. A
13. A
14. D
15. B
16. C
17. A ,
18. B
19. A
20. B
21. B
22. C
23. A
24. D
25. B
26. C
27. A
