1. All chemical equilibriums have:

I.	rates that are continuing to change
II.	an equilibrium constant expression
III.	equal concentrations of products and reactants

A. II only
B. III only
C. I and II only
D. I and III only
2. From the following, select the situation where both enthalpy and entropy favour the reaction toward products:
A.

Enthalpy	Entropy
increasing	increasing
increasing	decreasing
decreasing	decreasing
decreasing	increasing

3. Consider the following equilibrium:

$$
2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)} \rightleftarrows 2 \mathrm{NOBr}_{(g)}+\text { energy }
$$

The equilibrium will shift to the left as a result of
A. adding a catalyst.
B. adding some $\mathrm{NO}_{(g)}$.
C. increasing the volume.
D. decreasing the temperature.
4. Consider the following equilibrium:

$$
\mathrm{PCl}_{3(g)}+3 \mathrm{NH}_{3(g)} \rightleftarrows \mathrm{P}\left(\mathrm{NH}_{2}\right)_{3(g)}+3 \mathrm{HCl}_{(g)}
$$

The volume of the equilibrium system is increased and a new equilibrium is established. How have the rates been affected?
A.

Rate (forward)	Rate (reverse)
increased	decreased
decreased	increased
decreased	decreased
did not change	did not change

5. Starting with equal moles of reactants, which of the following equilibrium systems most favours the reactants?
A. $\quad \mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \rightleftarrows \mathrm{SO}_{3(g)}+\mathrm{NO}_{(g)} \quad \mathrm{K}_{e q}=3.4$
B. $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \quad \mathrm{K}_{e q}=31.4$
C. $\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)} \quad \mathrm{K}_{e q}=10$
D. $\quad \mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{(g)}$
$\mathrm{K}_{e q}=1.0 \times 10^{-31}$
6. Consider the following equilibrium reaction:

At time t_{1}, heat is applied to the system. Which of the following best describes the equilibrium reaction and the change in $\mathrm{K}_{e q}$?
A. exothermic and $\mathrm{K}_{e q}$ increases
B. exothermic and $\mathrm{K}_{e q}$ decreases
C. endothermic and $\mathrm{K}_{e q}$ increases
D. endothermic and $\mathrm{K}_{e q}$ decreases

$$
\mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{PCl}_{5(g)} \quad \mathrm{K}_{e q}=0.45 \text { at } 227^{\circ} \mathrm{C}
$$

Initially, a 1.00 L flask is filled with $0.100 \mathrm{~mol}_{\mathrm{PCl}_{3}}, 0.100 \mathrm{~mol} \mathrm{Cl}_{2}$, and $0.100 \mathrm{~mol} \mathrm{PCl}_{5}$ at $227^{\circ} \mathrm{C}$. Use $\mathrm{K}_{\text {Trial }}$ to predict the change in $\left[\mathrm{Cl}_{2}\right]$ as equilibrium is established.
A.

$\mathrm{K}_{\text {Trial }}$	$\left[\mathrm{Cl}_{2}\right]$
$\mathrm{K}_{\text {Trial }}>\mathrm{K}_{e q}$	increases
$\mathrm{K}_{\text {Trial }}<\mathrm{K}_{e q}$	increases
$\mathrm{K}_{\text {Trial }}>\mathrm{K}_{e q}$	decreases
$\mathrm{K}_{\text {Trial }}<\mathrm{K}_{e q}$	decreases

8. Consider the following equilibrium reaction:

$$
2 \mathrm{ICl}_{(g)} \rightleftarrows \mathrm{I}_{2(g)}+\mathrm{Cl}_{2(g)}
$$

Some ICl is added to an empty flask. How do the reaction rates change as the system approaches equilibrium?

	forward rate	reverse rate
A.	increases	increases
B.	increases	decreases
C.	decreases	increases
D.	decreases	decreases

9. In an equilibrium system, continuing microscopic changes indicate that the equilibrium is
A. dynamic.
B. complete.
C. exothermic.
D. spontaneous.
10. Consider the following equilibrium:

$$
4 \mathrm{CuO}_{(s)}+\text { energy } \rightleftarrows 2 \mathrm{Cu}_{2} \mathrm{O}_{(s)}+\mathrm{O}_{2(g)}
$$

The equilibrium will shift to the right as a result of
A. adding $\mathrm{CuO}_{(s)}$.
B. removing $\mathrm{O}_{2(\mathrm{~g})}$.
C. adding a catalyst.
D. decreasing the temperature.
11. Consider the following equilibrium:

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}
$$

The volume of the system is decreased. The equilibrium shifts
A. left since the reverse rate is greater than the forward rate.
B. left since the forward rate is greater than the reverse rate.
C. right since the reverse rate is greater than the forward rate.
D. right since the forward rate is greater than the reverse rate.
12. Consider the following equilibrium:

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftarrows 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+198 \mathrm{~kJ}
$$

When the temperature is increased, the equilibrium will shift
A. left with $\mathrm{K}_{e q}$ becoming larger.
B. right with $\mathrm{K}_{e q}$ becoming larger.
C. left with $\mathrm{K}_{e q}$ becoming smaller.
D. right with $\mathrm{K}_{e q}$ becoming smaller.
13. Starting with equal concentrations of reactants, which of the following will be closest to completion at equilibrium?
A. $\quad \mathrm{CO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{COCl}_{2(g)}$
$\mathrm{K}_{\text {eq }}=22$
B. $\mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{PCl}_{5(g)}$
$\mathrm{K}_{e q}=2.9 \times 10^{-2}$
C. $\mathrm{CO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{COCl}_{2(g)}$
$\mathrm{K}_{e q}=4.5 \times 10^{-9}$
D. $\mathrm{CH}_{3} \mathrm{O}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{NO}_{2(\mathrm{~g})}$
$\mathrm{K}_{e q}=2.1 \times 10^{-12}$
14. Consider the following equilibrium:

$$
2 \mathrm{COF}_{2(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{CF}_{4(g)}
$$

At equilibrium, a 1.00 L container contains $7.07 \times 10^{-4} \mathrm{~mol} \mathrm{COF}_{2}, 1.00 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}$, and $1.00 \times 10^{-3} \mathrm{~mol} \mathrm{CF}_{4}$. What is the value of $\mathrm{K}_{e q}$?
A. 7.07×10^{-4}
B. 1.41×10^{-3}
C. 0.500
D. 2.00
15. Consider the following reaction:

$$
2 \mathrm{ICl}_{(g)} \rightleftarrows \mathrm{I}_{2(g)}+\mathrm{Cl}_{2(g)}
$$

A closed container is initially filled with $\mathrm{ICl}_{(g)}$. What are the changes in the rate of the forward reaction and $\left[\mathrm{I}_{2}\right]$, as the system approaches equilibrium?
A.

Rate of forward reaction	$\left[\mathrm{I}_{2}\right]$
decreases	increases
decreases	decreases
increases	increases
increases	decreases

16. The entropy of a system is a term used to describe
A. randomness.
B. heat content.
C. average kinetic energy.
D. stored chemical energy.

Which of the following will cause this equilibrium to change from blue to green?
A. adding $\mathrm{NaBr}_{(s)}$
B. adding $\mathrm{NaNO}_{3(s)}$
C. adding a catalyst
D. decreasing the temperature
17. Consider the following equilibrium:

$$
\mathrm{Ni}_{(s)}+4 \mathrm{CO}_{(g)} \rightleftarrows \mathrm{Ni}(\mathrm{CO})_{4(\ell)} \quad \Delta \mathrm{H}=-160.8 \mathrm{~kJ}
$$

Which of the following will cause this equilibrium to shift to the left?
A. add some CO
B. decrease the volume
C. remove some $\mathrm{Ni}(\mathrm{CO})_{4}$
D. increase the temperature
19. Consider the following equilibrium:
(1 mark)

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)}+\text { energy } \underset{\rightleftarrows}{\rightleftarrows} \mathrm{NO}_{2(g)}
$$

Which of the following shows the relationship between concentration and time as a result of adding a catalyst at time $=\mathrm{t}_{1}$?
A.

B.

C.

D.

20. Consider the following equilibrium:

$$
\mathrm{H}_{2} \mathrm{~S}_{(g)}+\mathrm{I}_{2(s)} \rightleftarrows 2 \mathrm{HI}_{(g)}+\mathrm{S}_{(s)}
$$

What is the equilibrium expression for this reaction?
A. $\quad \mathrm{K}_{e q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{[\mathrm{HI}]^{2}}$
C. $\mathrm{K}_{e q}=\frac{[\mathrm{HI}]^{2}[\mathrm{~S}]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{I}_{2}\right]}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}[\mathrm{~S}]}$
21. Consider the following equilibrium:

$$
\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \quad \mathrm{K}_{e q}=5.0
$$

At equilibrium, the $[\mathrm{CO}]=0.20 \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.30 \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{H}_{2}\right]=0.90 \mathrm{~mol} / \mathrm{L}$. Calculate the equilibrium $\left[\mathrm{CO}_{2}\right]$.
A. $\quad 0.013 \mathrm{~mol} / \mathrm{L}$
B. $0.066 \mathrm{~mol} / \mathrm{L}$
C. $0.33 \mathrm{~mol} / \mathrm{L}$
D. $1.0 \mathrm{~mol} / \mathrm{L}$
22. Consider the following:

$$
\mathrm{CO}_{2(g)}+\mathrm{CF}_{4(g)} \rightleftarrows 2 \mathrm{COF}_{2(g)} \quad \mathrm{K}_{e q}=0.50
$$

In a reaction container the initial concentrations are:
$\left[\mathrm{CO}_{2}\right]=0.50 \mathrm{~mol} / \mathrm{L},\left[\mathrm{CF}_{4}\right]=0.50 \mathrm{~mol} / \mathrm{L},\left[\mathrm{COF}_{2}\right]=0.30 \mathrm{~mol} / \mathrm{L}$
To reach equilibrium, the reaction will proceed
A. left since Trial $\mathrm{K}_{e q}<\mathrm{K}_{e q}$
B. left since Trial $\mathrm{K}_{e q}>\mathrm{K}_{e q}$
C. right since Trial $\mathrm{K}_{e q}<\mathrm{K}_{e q}$
D. right since Trial $\mathrm{K}_{e q}>\mathrm{K}_{e q}$
23. All chemical equilibriums must have
A. $\mathrm{K}_{e q}=1$
B. \quad reactants $]=[$ products $]$.
C. rate forward = rate reverse.
D. mass of reactants $=$ mass of products.
24. Consider the following equilibrium reaction:

$$
4 \mathrm{HCl}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(g)}+2 \mathrm{Cl}_{2(g)}+111.4 \mathrm{~kJ}
$$

For the forward reaction, how do enthalpy and entropy change?
A.

Enthalpy	Entropy
increases	decreases
decreases	decreases
increases	increases
decreases	increases

25. Consider the following equilibrium:

$$
\mathrm{CH}_{3} \mathrm{Cl}_{(a q)}+\mathrm{OH}_{(a q)}^{-} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(a q)}+\mathrm{Cl}_{(a q)}^{-}
$$

The equilibrium will shift to the left as a result of the addition of
A. HNO_{3}
B. KNO_{3}
C. NaOH
D. $\mathrm{CH}_{3} \mathrm{Cl}$
26. Consider the following equilibrium at $25^{\circ} \mathrm{C}$:

$$
\mathrm{Ni}_{(s)}+4 \mathrm{CO}_{(g)} \rightleftarrows \mathrm{Ni}(\mathrm{CO})_{4(\ell)}
$$

For this reaction
A. $\mathrm{K}_{e q}=[\mathrm{CO}]^{4}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]}{[\mathrm{CO}]^{4}[\mathrm{Ni}]}$
B. $\mathrm{K}_{e q}=\frac{1}{[\mathrm{CO}]^{4}}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]}{[\mathrm{CO}]^{4}}$
27. Consider the following equilibrium:

$$
2 \mathrm{COF}_{2(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{CF}_{4(g)} \quad \mathrm{K}_{e q}=2.00
$$

At equilibrium, $\left[\mathrm{CO}_{2}\right]=0.050 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{CF}_{4}\right]=0.050 \mathrm{~mol} / \mathrm{L}$.
What is $\left[\mathrm{COF}_{2}\right]$ at equilibrium?
A. $\quad 0.0012 \mathrm{~mol} / \mathrm{L}$
B. $0.035 \mathrm{~mol} / \mathrm{L}$
C. $0.050 \mathrm{~mol} / \mathrm{L}$
D. $0.22 \mathrm{~mol} / \mathrm{L}$
28. Consider the following equilibrium:

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{Cl}_{2} \mathrm{O}_{(g)} \rightleftarrows 2 \mathrm{HOCl}_{(g)} \quad \mathrm{K}_{e q}=0.0900
$$

Initially, a 1.00 L flask is filled with 0.100 mol of $\mathrm{H}_{2} \mathrm{O}, 0.100 \mathrm{~mol}$ of $\mathrm{Cl}_{2} \mathrm{O}$ and 0.100 mol of HOCl . As equilibrium is established, the reaction proceeds to the
A. left because $\mathrm{K}_{\text {Trial }}>\mathrm{K}_{e q}$
B. left because $\mathrm{K}_{\text {Trial }}<\mathrm{K}_{e q}$
C. right because $\mathrm{K}_{\text {Trial }}>\mathrm{K}_{e q}$
D. right because $\mathrm{K}_{\text {Trial }}<\mathrm{K}_{e q}$
29. Consider the following:

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}
$$

Initially, SO_{3} is added to an empty flask. How do the rate of the forward reaction and $\left[\mathrm{SO}_{3}\right]$ change as the system proceeds to equilibrium?
A.

Forward Rate	$\left[\mathrm{SO}_{3}\right]$
decreases	increases
decreases	decreases
increases	increases
increases	decreases

30. Consider the following reaction:

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}+\text { energy }
$$

What positions do minimum enthalpy and maximum entropy tend toward?
A.

Minimum Enthalpy	Maximum Entropy
reactants	products
reactants	reactants
products	products
products	reactants

31.

$$
\mathrm{CO}_{2(g)}+\mathbf{H}_{2(g)} \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)}
$$

Which two stresses will each cause the equilibrium to shift to the left?
A. increase $\left[\mathrm{H}_{2}\right]$, increase [CO]
B. decrease $\left[\mathrm{H}_{2}\right]$, increase $\left[\mathrm{H}_{2} \mathrm{O}\right]$
C. increase $\left[\mathrm{CO}_{2}\right]$, decrease $[\mathrm{CO}]$
D. decrease $\left[\mathrm{CO}_{2}\right]$, decrease $\left[\mathrm{H}_{2} \mathrm{O}\right]$

$$
\mathbf{C O}_{2(g)}+\mathbf{H}_{2(g)} \rightleftarrows \mathbf{H}_{2} \mathrm{O}_{(g)}+\mathbf{C O}_{(g)}
$$

Which of the following graphs represents the forward rate of reaction when $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is added to the above equilibrium at time $=\mathrm{t}_{1}$?
A.

B.

C.

D.

33. Consider the following:

$$
2 \mathrm{NH}_{3(g)} \rightleftarrows \mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)}
$$

Initially, some NH_{3} is placed into a 1.0 L container. At equilibrium there is $0.030 \mathrm{~mol}_{2}$ present. What is the $\left[\mathrm{H}_{2}\right]$ at this equilibrium?
A. $\quad 0.010 \mathrm{~mol} / \mathrm{L}$
B. $\quad 0.030 \mathrm{~mol} / \mathrm{L}$
C. $0.060 \mathrm{~mol} / \mathrm{L}$
D. $0.090 \mathrm{~mol} / \mathrm{L}$
34. Which reaction has the following equilibrium expression?

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{7}}
$$

A. $4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(g)} \rightleftarrows 4 \mathrm{NO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
B. $4 \mathrm{NH}_{3(a q)}+7 \mathrm{O}_{2(g)} \rightleftarrows 4 \mathrm{NO}_{2(a q)}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
C. $4 \mathrm{NO}_{2(a q)}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows 4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(g)}$
D. $4 \mathrm{NO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows 4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(g)}$
35. What will cause the $\mathrm{K}_{e q}$ for an exothermic reaction to increase?
A. increasing [reactants]
B. decreasing [products]
C. increasing the temperature
D. decreasing the temperature
36. Consider the following equilibrium:

$$
\mathrm{PCl}_{5(g)} \rightleftarrows \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)} \quad \mathrm{K}_{e q}=9.0 \times 10^{-2}
$$

In a 1.0 L container an equilibrium mixture contains $6.0 \times 10^{-3} \mathrm{~mol}_{\mathrm{PCl}_{5}}$ and $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{PCl}_{3}$. How many moles of Cl_{2} are also present at equilibrium?
A. $5.4 \times 10^{-6} \mathrm{~mol}$
B. $6.7 \times 10^{-4} \mathrm{~mol}$
C. $5.4 \times 10^{-2} \mathrm{~mol}$
D. $1.5 \times 10^{-1} \mathrm{~mol}$
37. Consider the following:

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

Initially, HI is added to an empty flask. How do the rates of the forward and reverse reactions change as the system proceeds to equilibrium?
A.

Forward Rate	Reverse Rate
increases	increases
increases	decreases
decreases	decreases
decreases	increases

38. Consider the following reaction: $\quad 2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+$ energy $\rightarrow 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}$

Determine the enthalpy and entropy changes for the above reaction?
A.

Enthalpy	Entropy
increases	decreases
decreases	increases
increases	increases
decreases	decreases

$$
2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{CO}_{2(g)}+\text { energy }
$$

Which of the following two stresses will each cause the system to shift to the right?
A. increase temperature, increase volume
B. decrease temperature, increase volume
C. increase temperature, decrease volume
D. decrease temperature, decrease volume
40.

$$
2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{CO}_{2(g)}+\text { energy }
$$

Which of the following shows the forward rate of reaction when the temperature of the system is increased at time $=\mathrm{t}_{1}$?
A.

B.

C.

D.

41. Consider the following:

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}
$$

Initially, 0.030 mol SO 2 and $0.030 \mathrm{~mol}_{2}$ are placed into a 1.0 L container. At equilibrium, there is $0.020 \mathrm{~mol} \mathrm{O}_{2}$ present. What is the $\left[\mathrm{SO}_{2}\right]$ at equilibrium?
A. $\quad 0.010 \mathrm{~mol} / \mathrm{L}$
B. $\quad 0.020 \mathrm{~mol} / \mathrm{L}$
C. $\quad 0.030 \mathrm{~mol} / \mathrm{L}$
D. $\quad 0.040 \mathrm{~mol} / \mathrm{L}$
42. What is the equilibrium expression for the following system?

$$
\mathrm{CaCO}_{3(s)}+2 \mathrm{HF}_{(g)} \rightleftarrows \mathrm{CaF}_{2(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{2(g)}
$$

A. $\mathrm{K}_{e q}=\frac{[\mathrm{HF}]^{2}}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right]}$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right]}{[\mathrm{HF}]^{2}}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right][\mathrm{HF}]^{2}}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{CaF}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right][\mathrm{HF}]^{2}}$
43. What will cause the $\mathrm{K}_{e q}$ for an endothermic reaction to decrease?
A. adding a catalyst
B. increasing the surface area
C. increasing the temperature
D. decreasing the temperature
44. Consider the following equilibrium:

$$
\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{(g)}
$$

An equilibrium mixture consists of $1.0 \times 10^{-1} \mathrm{~mol} \mathrm{~N}_{2}, 2.0 \times 10^{-1} \mathrm{~mol} \mathrm{O}_{2}$ and $3.0 \times 10^{-3} \mathrm{~mol} \mathrm{NO}$ in a 1.0 L container. What is the value of $\mathrm{K}_{e q}$?
A. 4.5×10^{-4}
B. 2.2×10^{-4}
C. 1.5×10^{-1}
D. 3.0×10^{-1}
45. Consider the following:

$$
2 \mathrm{HBr}_{(g)} \rightleftarrows \mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)}
$$

Initially, HBr is added to an empty flask. How do the rate of the forward reaction and the $[\mathrm{HBr}]$ change as the system proceeds to equilibrium?
A.

Forward Rate	$[\mathrm{HBr}]$
decreases	decreases
decreases	increases
increases	increases
increases	decreases

46.

$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}+$ energy
Which of the following two stresses will each cause the system to shift to the right?
A. decrease temperature, decrease $\left[\mathrm{O}_{2}\right]$
B. increase temperature, increase $\left[\mathrm{SO}_{3}\right]$
C. increase temperature, decrease $\left[\mathrm{SO}_{3}\right]$
D. decrease temperature, increase $\left[\mathrm{SO}_{2}\right]$
47. $\quad 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}+$ energy

Which of the following graphs shows the reverse rate of reaction when a catalyst is added to the equilibrium at time $=\mathrm{t}_{1}$?
A.

B.

C.

D.

48. Consider the following:

$$
2 \mathrm{~N}_{2(g)}+\mathrm{O}_{2(g)}+\text { energy } \stackrel{\boldsymbol{?}}{\rightleftarrows} 2 \mathrm{~N}_{2} \mathrm{O}_{(g)}
$$

What positions do minimum enthalpy and maximum entropy tend toward?
A.

Minimum Enthalpy	Maximum Entropy
products	products
products	reactants
reactants	products
reactants	reactants

49. Consider the following:

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

Initially, some HI is placed into a 1.0 L container. At equilibrium there is $0.010 \mathrm{~mol} \mathrm{H}_{2}, 0.010 \mathrm{~mol} \mathrm{I}_{2}$ and 0.070 mol HI present. How many moles of HI were initially added to the container?
A. $\quad 0.060 \mathrm{~mol}$
B. 0.070 mol
C. 0.080 mol
D. 0.090 mol
50. What is the equilibrium expression for the following system?

$$
4 \mathrm{Fe}_{(s)}+3 \mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{Fe}_{2} \mathrm{O}_{3(s)}
$$

A. $\quad \mathrm{K}_{e q}=\left[\mathrm{O}_{2}\right]^{3}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]^{2}}{[\mathrm{Fe}]^{4}\left[\mathrm{O}_{2}\right]^{3}}$
B. $\mathrm{K}_{e q}=\frac{1}{\left[\mathrm{O}_{2}\right]^{3}}$
D. $\mathrm{K}_{e q}=\frac{\left[2 \mathrm{Fe}_{2} \mathrm{O}_{3}\right]}{[4 \mathrm{Fe}]\left[3 \mathrm{O}_{2}\right]}$
51. What will cause the value of $\mathrm{K}_{e q}$ for an endothermic reaction to increase?
A. increasing [products]
B. decreasing [products]
C. increasing the temperature
D. decreasing the temperature
52. Consider the following equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

An equilibrium mixture contains $4.0 \times 10^{-2} \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $1.5 \times 10^{-2} \mathrm{~mol} \mathrm{NO}_{2}$ in a 1.0 L flask. What is the value of $\mathrm{K}_{e q}$?
A. 5.6×10^{-3}
B. 3.8×10^{-1}
C. 7.5×10^{-1}
D. 1.8×10^{2}
53. Consider the following:

$$
2 \mathrm{NH}_{3(g)} \rightleftarrows \mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)}
$$

Initially, NH_{3} is added to an empty flask. How do the rates of the forward and reverse reactions change as the system proceeds to equilibrium?
A.

Forward Rate	Reverse Rate
increases	increases
increases	decreases
decreases	increases
decreases	decreases

54. Consider the following:

$$
\mathrm{H}_{2(g)}+\mathrm{Br}_{2(\ell)} \stackrel{?}{\stackrel{?}{\rightleftarrows}} 2 \mathrm{HBr}_{(g)}+\text { energy }
$$

What positions do minimum enthalpy and maximum entropy tend toward?
A.

Minimum Enthalpy	Maximum Entropy
products	products
products	reactants
reactants	products
reactants	reactants

55. $\quad \mathrm{H}_{2(g)}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}+$ energy

Which of the following stresses will not cause a shift in equilibrium?
A. decrease $\left[\mathrm{I}_{2}\right]$
B. increase $\left[\mathrm{H}_{2}\right]$
C. decrease volume
D. increase temperature
56.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}+\text { energy }
$$

Which of the following shows the reverse rate of reaction when the volume is decreased at time $=\mathrm{t}_{1}$?
A.

B.

C.

D.

57. Consider the following:

$$
2 \mathrm{SO}_{3(g)} \rightleftarrows 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)}
$$

Initially, some SO_{3} is placed into a 3.0 L container. At equilibrium there is 0.030 mol SO 2 present. What is the $\left[\mathrm{O}_{2}\right]$ at equilibrium?
A. $\quad 0.0050 \mathrm{~mol} / \mathrm{L}$
B. $0.010 \mathrm{~mol} / \mathrm{L}$
C. $0.015 \mathrm{~mol} / \mathrm{L}$
D. $0.030 \mathrm{~mol} / \mathrm{L}$
58. Which reaction has the following equilibrium expression?

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}
$$

A. $\quad \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{PCl}_{5(g)}$
B. $\quad \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(\ell)} \rightleftarrows \mathrm{PCl}_{5(g)}$
C. $\mathrm{PCl}_{5(g)} \rightleftarrows \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)}$
D. $\mathrm{PCl}_{5(g)} \rightleftarrows \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(\ell)}$
59. What will cause the value of $\mathrm{K}_{e q}$ for an exothermic reaction to decrease?
A. increasing the pressure
B. increasing the temperature
C. decreasing the temperature
D. decreasing the surface area
60. Consider the following equilibrium:

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

An equilibrium mixture contains $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2}, 2.0 \times 10^{-3} \mathrm{~mol} \mathrm{I}_{2}$ and $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{HI}$ in a 1.0 L container. What is the value of $\mathrm{K}_{e q}$?
A. 2.0×10^{-2}
B. 5.0×10^{1}
C. 5.0×10^{3}
D. 1.0×10^{4}
61. Which of the factors below is not a condition necessary for equilibrium?
A. a closed system
B. a constant temperature
C. equal forward and reverse reaction rates
D. equal concentrations of reactants and products
62. In order for a chemical reaction to go to completion, how must the entropy and enthalpy change?
A.

Entropy	Enthalpy
increases	increases
increases	decreases
decreases	increases
decreases	decreases

63. Consider the following equilibrium system: $2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)} \quad \mathrm{K}_{e q}=1.2 \times 10^{4}$ If additional SO_{2} is added to the system, what happens to the equilibrium and the value of $\mathrm{K}_{e q}$?
A.

Equilibrium	$\mathrm{K}_{e q}$
shifts left	decreases
shifts right	increases
shifts right	no change
no change	no change

64. Consider the following equilibrium system:

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}
$$

Determine the changes in reaction rates as a catalyst is added.

	Forward Rate	Reverse Rate
A.	increases	increases
B.	increases	decreases
C.	decreases	increases
D.	decreases	decreases

65. Consider the following equilibrium system:

$$
2 \mathrm{KClO}_{3(s)} \rightleftarrows 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}
$$

Which of the following is the equilibrium constant expression?
A. $\mathrm{K}_{e q}=\left[\mathrm{O}_{2}\right]^{3}$
B. $\mathrm{K}_{e q}=\frac{1}{\left[\mathrm{O}_{2}\right]^{3}}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{KClO}_{3}\right]^{2}}{[\mathrm{KCl}]^{2}\left[\mathrm{O}_{2}\right]^{3}}$
D. $\mathrm{K}_{e q}=\frac{[\mathrm{KCl}]^{2}\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{KClO}_{3}\right]^{2}}$
66. Consider the following equilibrium: $\quad \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}$ Which of the options below indicates that the reactants are favoured?
A. $\mathrm{K}_{e q}$ is zero.
B. $\mathrm{K}_{e q}$ is very large.
C. $\mathrm{K}_{e q}$ is slightly less than 1 .
D. $\mathrm{K}_{e q}$ is slightly greater than 1.
67. Consider the following equilibrium: $\quad \mathrm{N}_{2} \mathrm{O}_{4(g)}+$ energy $\rightleftarrows 2 \mathrm{NO}_{2(g)}$

How are $\mathrm{K}_{e q}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ affected by the addition of Ne (an inert gas) into the container at constant volume.
A.

$\mathrm{K}_{e q}$	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$
no change	no change
no change	increases
increases	decreases
decreases	increases

68. Consider the following equilibrium: $\quad \mathrm{Cl}_{2(g)}+2 \mathrm{NO}_{(g)} \rightleftarrows 2 \mathrm{NOCl}_{(g)} \quad \mathrm{K}_{e q}=5.0$ At equilibrium, $\left[\mathrm{Cl}_{2}\right]=1.0 \mathrm{M}$ and $[\mathrm{NO}]=2.0 \mathrm{M}$. What is the $[\mathrm{NOCl}]$ at equilibrium?
A. $\quad 0.80 \mathrm{M}$
B. $\quad 0.89 \mathrm{M}$
C. $\quad 4.5 \mathrm{M}$
D. 10 M
69. For the equilibrium system $\quad \mathrm{Cu}_{(s)}+2 \mathrm{Ag}_{(a q)}^{+} \underset{ }{\rightleftarrows} 2 \mathrm{Ag}_{(s)}+\mathrm{Cu}_{(a q)}^{+2}$

We would know the system is at equilibrium because
A. $\left[\mathrm{Cu}^{+2}\right]=\left[\mathrm{Ag}^{+}\right]$
B. $2\left[\mathrm{Cu}^{+2}\right]=\left[\mathrm{Ag}^{+}\right]$
C. the mass of $\mathrm{Cu}_{(s)}$ remains constant.
D. the mass of the entire system remains constant.
70. For the reacting system: $\quad 2 \mathrm{Li}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \xrightarrow{?} 2 \mathrm{LiOH}_{(a q)}+\mathrm{H}_{2(g)} \quad \Delta \mathrm{H}=-433 \mathrm{~kJ}$

What will entropy and enthalpy factors favour?

	Entropy	Enthalpy
A.	products	reactants
B.	products	products
C.	reactants	reactants
D.	reactants	products

71. Consider the following equilibrium: $\quad \mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}$

If some Ne gas is added at a constant volume then how will $\left[\mathrm{N}_{2}\right],\left[\mathrm{H}_{2}\right]$ and $\mathrm{K}_{e q}$ be affected?
A.

$\left[\mathrm{N}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$	$\mathrm{K}_{\text {eq }}$
increases	increases	decreases
decreases	decreases	increases
decreases	increases	does not change
does not change	does not change	does not change

72. What is the effect of adding a catalyst to an equilibrium system?
A. The value of E_{a} increases.
B. The value of $\mathrm{K}_{e q}$ increases.
C. Forward and reverse rates increase.
D. The concentration of products increases.
73. \quad Consider the following equilibrium: $\quad 2 \mathrm{CrO}_{4}{ }_{(a q)}^{2-}+2 \mathrm{H}^{+}{ }_{(a q)} \rightleftarrows \mathrm{Cr}_{2} \mathrm{O}_{7}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$ What is the $\mathrm{K}_{e q}$ expression?
A. $\frac{\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]}$
B. $\frac{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]}{\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}}$
C. $\frac{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]}{\left[2 \mathrm{CrO}_{4}{ }^{2-}\right]\left[2 \mathrm{H}^{+}\right]}$
D. $\frac{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}}$
74. A container is initially filled with pure SO_{3}. After a period of time, the following equilibrium is established:

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)} \quad \mathrm{K}_{e q}=7.0 \times 10^{25}
$$

What does this equilibrium mixture contain?
A. mostly products
B. mostly reactants
C. $\frac{3}{5}$ reactants and $\frac{2}{5}$ products
D. equal amounts of reactants and products
75. Consider the following equilibrium:

$$
2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{CO}_{2(g)} \quad \mathrm{K}_{e q}=4.0 \times 10^{-10}
$$

What is the value of $\mathrm{K}_{e q}$ for $2 \mathrm{CO}_{2(g)} \rightleftarrows 2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)}$?
A. 4.0×10^{-10}
B. 2.0×10^{-5}
C. 5.0×10^{4}
D. 2.5×10^{9}
76. Consider the following equilibrium:

$$
\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightleftarrows 2 \mathrm{HBr}_{(g)} \quad \Delta \mathrm{H}=-36 \mathrm{~kJ}
$$

How could the value of $\mathrm{K}_{e q}$ be increased?
A. add H_{2}
B. add HBr
C. increase the pressure
D. reduce the temperature
77. In which of the following will entropy and enthalpy factors favour the establishment of an equilibrium?
A. $\mathrm{CaCO}_{3(s)}+178 \mathrm{~kJ} \xrightarrow{?} \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
B. $\quad \mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \xrightarrow{?} \mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}+425 \mathrm{~kJ}$
C. $2 \mathrm{C}_{(s)}+2 \mathrm{H}_{2(\mathrm{~g})} \xrightarrow{?} \quad \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$
$\Delta \mathrm{H}=+52.3 \mathrm{~kJ}$
D. $2 \mathrm{C}_{2} \mathrm{H}_{6(g)}+7 \mathrm{O}_{2(g)} \xrightarrow{?} 4 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
$\Delta \mathrm{H}=-1560 \mathrm{~kJ}$
78. Consider the following equilibrium:

$$
\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(g)} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(g)} \quad \Delta \mathrm{H}=-91 \mathrm{~kJ}
$$

Which of the factors below would increase the concentration of $\mathrm{CH}_{3} \mathrm{OH}$ at equilibrium?
A. an addition of CO
B. an increase in the volume
C. a decrease in the pressure
D. an increase in the temperature
79. \quad Consider the following equilibrium: $\quad \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{PCl}_{5(\mathrm{~g})}$

If the volume of the system is decreased, how will the reaction rates in the new equilibrium compare with the rates in the original equilibrium?
A.

Forward Rate	Reverse Rate
increases	increases
increases	decreases
decreases	decreases
decreases	increases

80. Consider the following equilibrium:

$$
\begin{array}{cc}
\mathrm{H}_{2(g)} \\
\text { colourless }
\end{array} \underset{\text { purple }}{\mathrm{I}_{2(g)}} \underset{\text { colourless }}{\rightleftarrows} \underset{(g)}{2 \mathrm{HI}_{(g)}} \quad \Delta \mathrm{H}=-71.9 \mathrm{~kJ}
$$

Which of the following would allow you to conclude that the system has reached equilibrium?
A. The pressure remains constant.
B. The reaction rates become zero.
C. The colour intensity remains constant.
D. The system shifts completely to the right.
81. Consider the following equilibrium: $\quad \mathrm{Fe}_{2} \mathrm{O}_{3(s)}+3 \mathrm{CO}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{Fe}_{(s)}+3 \mathrm{CO}_{2(g)}$ Identify the equilibrium constant expression.
A. $\mathrm{K}_{e q}=\frac{\left[\mathrm{CO}_{2}\right]^{3}}{[\mathrm{CO}]^{3}}$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{CO}_{2}\right]^{3}[\mathrm{Fe}]^{2}}{\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right][\mathrm{CO}]^{3}}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right][\mathrm{CO}]^{3}}{\left[\mathrm{CO}_{2}\right]^{3}[\mathrm{Fe}]^{2}}$
82. Consider the following equilibrium system:

$$
2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows 2 \mathrm{NOCl}_{(g)} \quad \Delta \mathrm{H}=-77 \mathrm{~kJ}
$$

In which direction will the equilibrium shift and what happens to the value of $\mathrm{K}_{e q}$ when the temperature of the system is increased?
A.

Shift	$\mathrm{K}_{\text {eq }}$
right	increases
right	decreases
left	increases
left	decreases

83. Consider the following equilibrium:

$$
\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(g)} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(g)}
$$

At equilibrium it was found that $[\mathrm{CO}]=0.105 \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2}\right]=0.250 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{CH}_{3} \mathrm{OH}\right]=0.00261 \mathrm{~mol} / \mathrm{L}$. Which of the following is the equilibrium constant value?
A. 9.94×10^{-2}
B. 0.398
C. 2.51
D. 10.0
84. Consider the following equilibrium: $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$

How will the forward and reverse equilibrium reaction rates change when additional H_{2} is added to the system?
A.

Forward Rate	Reverse Rate
increase	increase
increase	decrease
decrease	increase
no change	no change

85.

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}
$$

This equilibrium will shift right as the result of the addition of some extra $\mathrm{H}_{2} \mathrm{O}$. How will this shift affect the concentrations of the other gases?
A.

$[\mathrm{CO}]$	$\left[\mathrm{CO}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$
increases	decreases	decreases
increases	increases	decreases
decreases	increases	increases
decreases	decreases	increases

